Novikov's Ext² at the prime 2

Katsumi SHIMOMURA (Received April 1, 1981)

§ 1. Introduction

Let BP denote the Brown-Peterson spectrum at a prime p, whose coefficient ring $BP_* = \pi_*(BP)$ is the polynomial ring

$$BP_* = Z_{(p)}[v_1, v_2, \cdots]$$
 $(\deg v_i = 2(p^i - 1))$

with Hazewinkel's generators v_i ([2]). Then, we have the Hopf algebroid (BP_*, BP_*BP) , where $BP_*BP = BP_*[t_1, t_2, \cdots]$ (deg $t_i = 2(p^i - 1)$) ([1; Part II], [5], [8], [6; § 1]). For the spectrum BP, we have Novikov's analogue of the Adams spectral sequence converging to the stable homotopy ring $\pi_*(S)$ of the sphere spectrum S. Its E_2 -term E_2^* is the cohomology $\operatorname{Ext}_{BP_*BP}^*(BP_*, BP_*)$ (denoted simply by $\operatorname{Ext}_{BP_*}^*BP_*$) of the Hopf algebroid (BP_*, BP_*BP) , (cf. [1; Part III], [7]). The E_2 -term E_2^1 is determined by S. P. Novikov [7] for any prime p, and E_2^2 by H. R. Miller, D. C. Ravenel and W. S. Wilson [6] for any odd prime p.

In this paper, we shall determine E_2^2 ,* for the prime 2, and study the non-triviality of some elements in $\pi_*(S)$. We notice that the results for E_2^2 ,* is also obtained by S. A. Mitchell, independently. From now on, we assume that the prime p is 2.

To state our results, we recall the elements $y_i \in v_1^{-1}BP_*$ and $x_i \in v_2^{-1}BP_*$, which are denoted by $x_{1,i}$ and $x_{2,i}$ in [6; (5.11)] respectively, given by

$$\begin{aligned} (1.1) \quad y_0 &= v_1, \ y_1 = v_1^2 - 4v_1^{-1}v_2, \ y_i = y_{i-1}^2 \quad (i \geq 2), \\ x_0 &= v_2, \ x_1 = v_2^2 - v_1^2v_2^{-1}v_3, \ x_2 = x_1^2 - v_1^3v_2^3 - v_1^5v_3, \ x_i = x_{i-1}^2 \quad (i \geq 3). \end{aligned}$$

By using these elements and the universal Greek letter map η (for the definition, cf. [6; (3.6)]), we can define the elements

(1.2)
$$\alpha_m = \eta(v_1^m/2) \text{ for odd } m \ge 1, \qquad \alpha_{2/2} = \eta(y_1/4), \text{ and}$$

 $\alpha_{2^{i}m/i+2} = \eta(y_1^m/2^{i+2}) \text{ for } i \ge 1, \text{ odd } m \ge 1 \text{ with } 2^i m \ge 4,$

which generate Ext^1BP_* (cf. [6; Cor. 4.23]). Further, we can define the elements

(1.3.1)
$$\beta_{2^{n_s/j,i+1}} = \eta(x_n^s/2^{i+1}v_1^j) \quad \text{in} \quad \text{Ext}^2 BP_*$$

for $n \ge 0$, odd $s \ge 1$, $j \ge 1$, $i \ge 0$ with