HIROSHIMA MATH. J. 13 (1983), 101–108

Finitely generated subalgebras of generalized solvable Lie algebras

Naoki KAWAMOTO (Received August 18, 1982)

Introduction

Recently many authors considered several conditions under which a subalgebra of a Lie algebra is a subideal or an ascendant subalgebra. Such conditions have been also investigated for groups. Especially Peng [4] and Whitehead [5] presented some criteria for a finitely generated subgroup to be subnormal.

In this paper we shall give several conditions which ensure that a finitely generated subalgebra of a Lie algebra is a subideal or an ascendant subalgebra. The following is our main result: When L is a solvable Lie algebra of not necessarily finite dimension over a field of characteristic zero, any subalgebra H of L generated by $\{h_1, \ldots, h_n\}$ is a subideal of L if and only if there exists an integer $m \ge 0$ such that $L(ad h_i)^m \subseteq H$ for $1 \le i \le n$ (Theorem 1(a)). Conditions for a finitely generated subalgebra to be an ascendant subalgebra are also given (Theorem 1(b) and Theorem 2).

1. Preliminaries

Throughout this paper L will denote a Lie algebra of not necessarily finite dimension over a field t of characteristic zero. We shall follow [1] for notation and terminology. In particular, $H \sin L$, $H \csc L$, and $H \lhd ^{\omega}L$ mean respectively that H is a subideal, an ascendant subalgebra, and an ω -step ascendant subalgebra of L, where ω is the first infinite ordinal. Triangular brackets $\langle \rangle$ denote the subalgebra of L generated by elements inside them.

F, \mathfrak{N} , \mathfrak{A} denote respectively the classes of finite dimensional, nilpotent, and solvable Lie algebras. A Lie algebra L belongs to the class $\mathfrak{k}\mathfrak{A}$ if there is an ordinal λ and an ascending series $(L_{\alpha})_{\alpha \leq \lambda}$ of L whose factors $L_{\alpha+1}/L_{\alpha}$ are abelian. If in addition each L_{α} is an ideal of L, then L belongs to the class $\mathfrak{k}(\lhd)\mathfrak{A}$.

For $x, y \in L$ and an integer $n \ge 0$, we write $[x, {}_{n}y] = x(\text{ad } y)^{n}$. The similar notation is used for subspaces. A derivation d of L is nil if for any finite dimensional subspace M of L there is an integer $n = n(M) \ge 0$ such that $Md^{n} = 0$. We denote by [End(V)] the Lie algebra of all linear endomorphisms of a vector space V over \mathfrak{k} .

We begin with the following