Kaplansky's radical and Hilbert Theorem 90 II

Daiji Kijima and Mieo Nishi (Received May 19, 1982)

Let F be a pre-Hilbert field, $K = F(\sqrt{a})$ be a non-radical extension of F (i.e. $a \notin R(F)$ where R(F) is Kaplansky's radical of F) and $N: K \to F$ be the norm map. In [2], we introduced topologies on the groups \dot{F}/\dot{F}^2 and \dot{K}/\dot{K}^2 so that the norm map N is continuous and R(F) is closed. We showed there that $N^{-1}(R(F)) = (\dot{F} \cdot R(K))^-$, where the bar means the topological closure of $\dot{F} \cdot R(K)$.

In this paper we discuss the case where $K = F(\sqrt{a})$ is a radical extension of a quasi-pythagorean field F. A field F is called quasi-pythagorean if $R(F) = D_F \langle 1, 1 \rangle = \{x \in \dot{F}; \text{ the form } \langle 1, 1 \rangle \text{ represents } x\}$. The main purpose of this paper is to give some properties of a quasi-pythagorean field F and show that $N^{-1}(R(F)) = \dot{F} \cdot R(K)$. In the last section of this paper, we shall give an example of a quasi-pythagorean field F with dim $R(F)/\dot{F}^2 = n$ for any natural number n and dim $\dot{F}/R(F) = \infty$.

§ 1. Preliminaries

In this section, we state some basic facts on Scharlau's method of transfer. By a field F, we shall always mean a field of characteristic different from two. Let \dot{F} denote the multiplicative group of F. For a quadratic form φ_F over F, we define $D_F(\varphi) = \{a \in \dot{F}; \varphi_F \text{ represents } a\}$ and $G_F(\varphi) = \{a \in F; a\varphi \simeq \varphi\}$. Let K be an extension field of F, and φ_F be a form over F. We denote $\varphi_F \otimes K$ by φ_K for simplicity.

Let $K = F(\sqrt{a})$ be a quadratic extension of F and $x = b + c\sqrt{a}$ $(b, c \in F)$ be an element of K. We write Im(x) = c and $\bar{x} = b - c\sqrt{a}$. For any element $y \in K$, we define the map $s_y \colon K \to F$ with $s_y(x) = Im(y\bar{x})$. It is clear that s_y is a non-zero F-linear functional, and for any non-zero functional $s \colon K \to F$, there exists a unique element $y \in K$ such that $s = s_y$. For a form q_K over K, we denote the transfer of q_K with respect to s_y by $s_y^*(q_K)$.

LEMMA 1.1. Let $K = F(\sqrt{a})$ be a quadratic extension of F. For $y \in K$ and a form q_K over K, the following statements are equivalent:

- (1) $s_y^*(q_K)$ is isotropic.
- (2) $D_{\kappa}(q_{\kappa}) \cap y\dot{F} \neq \phi$.

PROOF. We first assume that $s_v^*(q_K)$ is isotopic. Then there exists $x \in D_K(q_K)$