On the map defined by regarding embeddings as immersions

Tsutomu YASUI

(Received December 20, 1982)

Introduction

Let *M* be a closed connected smooth manifold of dimension *n* and \mathbb{R}^m the *m*-dimensional Euclidean space. Denote by $[M \subseteq \mathbb{R}^m]$ the set of regular homotopy classes of immersions of *M* in \mathbb{R}^m and by $[M \subset \mathbb{R}^m]$ the set of isotopy classes of embeddings of *M* in \mathbb{R}^m , and consider the commutative diagram

$$\begin{bmatrix} M \subset R^{m+1} \end{bmatrix} \xrightarrow{J_{m+1}} \begin{bmatrix} M \subseteq R^{m+1} \end{bmatrix}$$
$$\begin{bmatrix} E_m \\ I_m \end{bmatrix} \qquad \qquad I_m \\ \begin{bmatrix} M \subset R^m \end{bmatrix} \xrightarrow{J_m} \begin{bmatrix} M \subseteq R^m \end{bmatrix},$$

where E_m and I_m are the maps induced from the natural inclusion $R^m \subset R^{m+1}$ and J_k is the one defined by regarding embeddings as immersions.

The set $[M \subseteq R^m]$ for 2m > 3n+1 is an abelian group by taking 0 arbitrarily if it is not empty, and the map I_m is a homomorphism by taking $I_m(0)=0$; while so are the set $[M \subset R^m]$ and the maps E_m and J_m for 2m > 3(n+1) (see J. C. Becker [2]).

The purpose of this paper is to study the above commutative diagram when m=2n-1:

$$[M \subset R^{2n}] \xrightarrow{J_{2n}} [M \subseteq R^{2n}]$$

$$(*) \qquad E \uparrow \qquad I \uparrow \qquad (E = E_{2n-1}, I = I_{2n-1}),$$

$$[M \subset R^{2n-1}] \xrightarrow{J_{2n-1}} [M \subseteq R^{2n-1}]$$

(here we assume that the sets in consideration are not empty).

When $n \ge 4$, the upper groups are determined by A. Haefliger and M. W. Hirsch [3], [5], [6] and so is the group $[M \subseteq R^{2n-1}]$ by D. R. Bausum [1, Th. 37 and Prop. 41], L. L. Larmore and E. Thomas [10, Th. 5.1] and R. D. Rigdon [11, Th. 10.4], and moreover it is proved by R. D. Rigdon [11, Th. 10.4] that *I* is trivial for even *n* and is surjective for odd *n*, respectively. When $n \ge 6$, $[M \subset R^{2n-1}]$ is an abelian group and Im *E* is determined by R. D. Rigdon [11, Th. 11.11 and Th. 11.26]. Together with these results, we have the following

MAIN THEOREM. Let M be a closed connected smooth manifold of dimension