HIROSHIMA MATH. J. 14 (1984), 211-214

A note on bounded positive entire solutions of semilinear elliptic equations

 $\mathcal{A}(\mathcal{A})$ and $\mathcal{A}(\mathcal{A})$. Then

Manabu NAITO

(Received August 18, 1983)

In this note we are concerned with bounded positive entire solutions of the second order semilinear elliptic equation

(1)
$$
\Delta u + a(x)f(u) = 0, \quad x \in R^n,
$$

where $n \ge 3$ and Δ is the *n*-dimensional Laplace operator. By an entire solution of (1) we mean a function $u \in C^2(R^n)$ which satisfies (1) at every point of R^n . We assume throughout that $a(x)$ is a locally Hölder continuous function on $Rⁿ$ and $f(u)$ is a locally Lipschitz continuous function on $(0, \infty)$ which is positive and nondecreasing for $u > 0$. As usual, |x| denotes the Euclidean length of $x \in R^n$.

Our result is the following:

THEOREM. *Suppose that there exist locally Holder continuous functions* $a_{*}(t)$ and $a^{*}(t)$ on [0, ∞) such that

(2)
$$
-a_*(|x|) \leq a(x) \leq a^*(|x|) \quad \text{for} \quad x \in \mathbb{R}^n;
$$

(3)
$$
a_*(t)
$$
 and $a^*(t)$ are nonnegative for $t \ge 0$;

(4)
$$
\int_0^\infty t a_*(t) dt = A_* < \infty \quad and \quad \int_0^\infty t a^*(t) dt = A^* < \infty.
$$

Define the sets L_* *and* L^* *by*

(5)
$$
L_* = \{ \ell | \ell > 0 \text{ and } \ell - f(\ell) A_*(n-2)^{-1} > 0 \},
$$

(6)
$$
L^* = \{ \ell | \ell = c - f(c)A^*(n-2)^{-1} > 0 \text{ for some } c > 0 \},
$$

and suppose that $L_* \cap L^*$ *is nonempty.*

Then, for any $\ell \in L_* \cap L^*$ *, there exists an entire solution u(x) of (1) which is positive for xeRⁿ and satisfies*

(7)
$$
u(x) \longrightarrow \ell \quad as \quad |x| \longrightarrow \infty.
$$

Observe that, in the case of $f(u) = u^{\gamma}$, if $A_* = A^* > 0$ then the set $L_* \cap L^*$ becomes the interval:

$$
L_* \cap L^* = (0, (1 - \gamma^{-1})((n - 2)/\gamma A^*)^{1/(\gamma - 1)}] \quad \text{for} \quad \gamma > 1;
$$