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In this note we are concerned with bounded positive entire solutions of the
second order semilinear elliptic equation

€)) Au + a(x)f(u) =0, xeR",

where n>3 and 4 is the n-dimensional Laplace operator. By an entire solution

of (1) we mean a function u e C*(R") which satisfies (1) at every point of R".

We assume throughout that a(x) is a locally Holder continuous function on R”

and f(u) is a locally Lipschitz continuous function on (0, oo) which is positive and

nondecreasing for u>0. As usual, |x| denotes the Euclidean length of x € R".
Our result is the following:

THEOREM. Suppose that there exist locally Hélder continuous functions
a4(t) and a*(t) on [0, ©) such that

(2 —ax(|x]) = a(x) = a*(Ix])  for xeR™;

3) a,(t) and a*(t) are nonnegative for t = 0;

4) gm tay(f)dt = A, < o and Sw ta*(f)dt = A* < .
0 0

Define the sets L, and L* by
5) L, ={41¢>0 and 4—f(£)A,(n—2)"1>0},
(6) L* = {£14=c—f(c)A*(n—2)"1>0 for some ¢>0},

and suppose that L, 0 L* is nonempty.

Then, for any ¢ € Ly N L*, there exists an entire solution u(x) of (1) which
is positive for x € R" and satisfies

) u(x)— 4 as |x|— co.

Observe that, in the case of f(u)=u’, if A,=A4*>0 then the set L, nL*
becomes the interval:

Ly 0 L* = (0, 1=y~ N (n=2)/y4®)V0=D]  for p>1;



