Self-adjoint harmonic spaces and Dirichlet forms

Michael RÖCKNER

(Received March 22, 1983)

1. Introduction and notations

The aim of this paper is to clarify the relation between energy forms on a self-adjoint harmonic space (X, \mathcal{H}) studied by Maeda in [7] (cf. also [6]) and Dirichlet forms on $L^2(X; m)$ in the sense of Fukushima [5] and Silverstein [11]. Here *X* denotes a locally compact Hausdorff space with a countable base, con nected and locally connected, $\mathcal H$ the harmonic sheaf and m a positive Radon measure on *X.* More precisely: we determine the set of all positive Radon measures m on X such that Maeda's energy form E with domain \mathscr{E}_0 can be considered as an ,,extended Dirichlet space with reference measure m" as defined in [5] und [11].

Let us recall the basic definitions and notations and give a brief review of Maeda's construction of energy forms.

Let (X, \mathcal{H}) be a self-adjoint harmonic space as defined in [6] §1.2. In particular we assume that the constant function 1 is superharmonic (Axiom 4 in [6]). Let *G* denote the symmetric (up to a multiplicative constant unique) Green function of X. Let $*\mathcal{H}^+(X)$ denote the set of all positive hyperharmonic functions on X. $(X, * \mathcal{H}^+(X))$ is a standard balayage space in the sense of [2]. Let τ_f denote the $*\mathcal{H}^+(X)$ -fine topology on X; i.e., the coarsest topology on X such that each function in $*\mathcal{H}^+(X)$ is continuous with respect to τ_f . Notations with respect to τ_f will be designated by the prefix ,,fine(ly)- \cdot . For a numerical function *g* on *X* let *§* denote the greatest lower semi-continuous minorant of *g.* Define for $u \in {}^* \mathcal{H}^+(X)$ and $A \subset X$

$$
R_u^A := \inf \{ v \in {}^* \mathcal{H}^+(X) : v \geq u \quad \text{on} \quad A \},
$$

then \hat{R}_{μ}^A is the so-called balayage of *u* on *A*. Let $\mathcal M$ denote the set of all Radon measures on *X* and $M^+ := {\mu \in \mathcal{M} : \mu \ge 0}$. We define for $\mu \in \mathcal{M}^+$

$$
G\mu := \int G(\cdot, y) d\mu(y)
$$

and for $\mu \in \mathcal{M}$ and $x \in \{G\mu^+ < \infty\}$ \cup $\{G\mu^- < \infty\}$

$$
G\mu(x)=G\mu^+(x)-G\mu^-(x),
$$