On the Adams-Novikov spectral sequence and products of β -elements

Katsumi SHIMOMURA (Received May 20, 1985)

§1. Introduction

Let p be a given prime ≥ 5 and BP the Brown-Peterson spectrum at p; and consider the Hopf algebroid (cf. [2], [12])

$$(A, \Gamma) = (BP_*, BP_*BP) = (Z_{(p)}[v_1, v_2, \cdots], BP_*[t_1, t_2, \cdots]),$$

and the Γ -comodules A and A/(p). Then, for the sphere spectrum S localized at p and the Moore spectrum M mod p, we have the Adams-Novikov spectral sequence (cf. [3], [12]):

(1.1)
$$E_2 = \operatorname{Ext}_{\Gamma}^*(A, A) \quad (\operatorname{resp.} \operatorname{Ext}_{\Gamma}^*(A, A/(p))) \Longrightarrow \pi_*S \quad (\operatorname{resp.} \pi_*M).$$

This is investigated by several authors to study the structure of the stable homotopy ring π_*S of spheres ([3], [6], [7]).

Now, for the Γ -comodules N_1^j and $M_1^j = v_{1+j}^{-1} N_1^j$ such that $N_1^0 = A/(p)$ and N_1^{j+1} is the cokernel of the localization map $N_1^j \rightarrow M_1^j$, we have the chromatic spectral sequence (cf. [3]):

(1.2)
$$E_2 = \operatorname{Ext}_{\Gamma}^*(A, M_1^*) \Longrightarrow \operatorname{Ext}_{\Gamma}^*(A, A/(p)).$$

In this paper, we are concerned with $\operatorname{Ext}_{r}^{*}(A, M_{1}^{1})$ for $* \geq 2$ by continuing the studies in [3] and [11] for *=0, 1 to obtain the following

THEOREM A. The $F_p[v_1]$ -module $\operatorname{Ext}^*_{\Gamma}(A, M_1^1)$ is given by Theorem 4.4.

Here, we note the following: Consider the spectrum N which is the cofiber of the localization map $M \rightarrow \alpha^{-1}M$ for the Adams map $\alpha \in [M, M]_*$. Then, by Ravenel's localization functor L_2 (see [10]), we have the spectrum L_2N with $BP \wedge L_2N = N \wedge v_2^{-1}BP$ and the Adams-Novikov spectral sequence:

(1.3)
$$E_2 = \operatorname{Ext}_{\Gamma}^*(A, M_1^1) \Longrightarrow \pi_*(L_2N).$$

Thus, Theorem A implies immediately the following

COROLLARY. The spectral sequence (1.3) collapses, and $\pi_*(L_2N)$ is an $F_p[\alpha]$ -module isomorphic to $\operatorname{Ext}_{F}^*(A, M_1^{1})$ in Theorem 4.4 by sending α to v_1 .