Generic solvability of the equations of Navier-Stokes

Hermann SOHR and Wolf von WAHL (Received August 25, 1986)

1. Introduction

Let $\Omega \subset \mathbb{R}^3$ be a bounded domain in \mathbb{R}^3 with a smooth boundary $\partial \Omega$; $\partial \Omega$ is of class C^{∞} . We consider the equations of Navier-Stokes

(1.1)
$$u' - \Delta u + u \cdot \nabla u + \nabla \pi = f$$
, $\operatorname{div} u = 0$, $u|_{\partial\Omega} = 0$, $u(0) = u_0$

on the cylindrical domain $\Omega \times (0, T) \subset \mathbb{R}^4$ with some T > 0, and we investigate strong solutions u of (1.1); these are solutions with $u \in L^p(0, T; H^{2,p}(\Omega)^3) \cap \mathring{H}^{1,p}(\Omega)^3$ and $u' \in L^p(0, T; L^p(\Omega)^3)$ for some p with $2 \le p < \infty$.

Using the projection $P_p: L^p(\Omega)^3 \to H_p(\Omega)$ from $L^p(\Omega)^3$ onto the subspace $H_p(\Omega) \subset L^p(\Omega)^3$ of divergence free functions with zero normal component on $\partial\Omega$ (in the sense of [3]), we can write (1.1) in the following equivalent form as an evolution equation in $H_p(\Omega)$:

(1.2)
$$u' + A_n u + P_n (u \cdot \nabla u) = P_n f, \quad u(0) = u_0, \quad 0 \le t \le T.$$

Here $A_p\colon v\to A_pv\colon =-P_p\Delta v$ denotes the Stokes operator with domain $D(A_p)\colon =H^{2,p}(\Omega)^3\cap \mathring{H}^{1,p}(\Omega)^3\cap H_p(\Omega)$. We can define the fractional powers A_p^α of A_p with $0\le \alpha\le 1$ and domain $D(A_p^\alpha)\supset D(A_p)$ as in [6]. Let $f\in L^p(0,T;L^p(\Omega)^3)$ and $u_0\in D(A_p^{1-(1/p)+\delta})$ with some $\delta,\ 0<\delta<1/p$ (take $u_0\in D(A_p)$ for example). Then a strong solution u of (1.1) or (1.2) is defined by the conditions $u\in L^p(0,T;D(A_p)),\ u'\in L^p(0,T;L^p(\Omega)^3)$ and (1.2).

The existence of strong solutions of (1.1) for arbitrary T>0 is an important unsolved problem up to now. Therefore it is interesting to know properties of the set

$$R(u_0) := \{ f \in L^p(0, T; L^p(\Omega)^3) | (1.2) \text{ has a unique strong solution } u$$
 with data $f, u_0 \}$

for a fixed initial value $u_0 \in D(A_p^{1-(1/p)+\delta})$. It is not known whether or not $R(u_0) = L^p(0, T; L^p(\Omega)^3)$; however we can prove some density properties of this set. This gives us some information how many f do exist such that (1.1) is strongly solvable.

Solonnikov's theory of local solvability [10; §10] tells us that $R(u_0) \subset L^p(0, T; L^p(\Omega)^3)$ is an open subset. In case p=2 it has been shown that $R(u_0)$