Riesz potentials, higher Riesz transforms and Beppo Levi spaces

Takahide KUROKAWA

(Received December 23, 1987)

Table of contents

Section 1.	Introduction
Section 2.	Notation and preliminaries
Section 3.	Integral inequalities and Riesz potentials of order (m, k)
Section 4.	Higher Riesz transforms
Section 5.	Primitives of higher order
Section 6.	Beppo Levi spaces
Section 7.	Embedding and interpolation theorems
References	

§1. Introduction

Let \mathbb{R}^n be the *n*-dimensional Euclidean space and f be a continuous function on \mathbb{R}^n with compact support. For a positive integer l with 2l < n, a solution of the equation

$$(1.1) \qquad \qquad \Delta^l \mathbf{u} = c_{l,n} f$$

is given by

$$U_{2l}^{f}(x) = \int |x - y|^{2l - n} f(y) dy,$$

where $c_{l,n} = (2l-n)(2l-2-n)\cdots(2-n)2^l(l-1)!\pi^{n/2}/\Gamma(n/2)$. The function U_m^f is called the Riesz potential of order *m* of *f*. In particular, U_2^f is the Newton potential of *f*. Naturally, the following problem arises: Find a representation of a solution of the equation (1.1) for any positive integer *l* and any L^p -function *f*. We note here that for an L^p -function *f*, U_m^f does not necessarily exist in case $m - (n/p) \ge 0$.

Let *m* be a positive integer and p > 1. We denote by \mathscr{L}_m^p the space of all distributions *u* such that $D^{\alpha} u \in L^p$ for any $|\alpha| = m$. If m - (n/p) < 0, then $u \in \mathscr{L}_m^p$ can be represented as follows ([12]):

(1.2)
$$u(x) = \sum_{|y| \le m-1} a_y x^y + U_m^f(x), \quad f \in L^p.$$

We are also concerned with the following problem: For any positive integer m and p