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§1. Introduction

Let Rn be the n-dimensional Euclidean space and / be a continuous function on

Rn with compact support. For a positive integer / with 21 <n, a solution of the

equation

(1.1)

is given by

•ί= \\χ-y\2l-nf(y)dy,

where chn = (21 - ri) (21 - 2 - n) -(2 - ή)2\l- l)\πn/2/T(n/2). The function Όf

m is called

the Riesz potential of order m of/ In particular, U{ is the Newton potential of/

Naturally, the following problem arises: Find a representation of a solution of the

equation (1.1) for any positive integer / and any LMunction/ We note here that for

an LMunction/ Us

m does not necessarily exist in case m — (n/p)^0.

Let m be a positive integer and p>\. We denote by S£v

m the space of all

distributions u such that DaueLp for any |α| = m. If m — (n/p)<0, then ue<£v

m can be

represented as follows ([12]):

(1.2) n ^

We are also concerned with the following problem: For any positive integer m and p


