Maximal extensions of ordered fields

Daiji KIJIMA, Mieo NISHI and Miyoko SAKAIBARA (Received December 2, 1987)

The notion of maximal ordered fields was first introduced in [2] and [3] by the authors. The existence and the uniqueness for a given rank were mainly discussed there.

In this paper, we say that K is a maximal extension of an ordered field F if $\psi_{K/F}$ is bijective and K is a maximal ordered field. The aim of this paper is to develope serveral basic properties of maximal extensions. Namely, for maximal extensions K_i/F_i (i=1, 2) and a given isomorphism σ : $F_1 \simeq F_2$ as ordered fields, there exists an extension σ' : $K_1 \simeq K_2$ of σ ; we also show that there can be infinitely many such extensions. Moreover we show that, for any extension K/F_1 such that K is a maximal ordered field, there exists an F_1 -embedding $K_1 \rightarrow K$.

§1. Maximal extensions

For an ordered field $F, A_0 := A(F, Q) = \{a \in F; |a| < b \text{ for some } b \in Q\}$ is the finest valuation ring, that is, every convex valuation ring of F is a localization of A_0 and conversely. The set $\mathscr{C}(F)$ of all convex valuation rings of F is a totally ordered set under the inclusion relation. Let G_0 be the value group of the finest valuation defined by A_0 . It is clear that $\mathscr{C}(F)$ is isomorphic to the set $\mathscr{H}(F)$ of all convex subgroups of G_0 as totally ordered sets. If K/F is an extension of ordered fields, we have a surjection $\psi_{K/F} : \mathscr{C}(K) \rightarrow \mathscr{C}(F)$ defined by $\psi(B_i) = B_i \cap F, B_i \in \mathscr{C}(K)$ (cf. [2], §1). A pair (A, B) of subsets of F is called a cut of F if $A \cup B = F$ and a < b for any $a \in A$ and $b \in B$, where A or B may be an empty set. It follows from [1], Theorem 1.2, that if F is real closed, then there is a one to one correspondence between the set of all cuts of F and the set of all orderings of F(x), where F(x)/F is a simple transcendental extension. For a subset C of F and an element a of F, we write C < a if c < a for any $c \in C$. We say that K is a maximal ordered field if $\psi_{L/K}$ is not bijective for any proper extension L/K of ordered fields (cf. [3], Definition 2.1).

DEFINITION 1.1. For an ordered field F, let K/F be an extension of ordered fields. When K is a maximal ordered field and $\psi_{K/F}$ is bijective, we say that K is a maximal extension of F.

For any ordered field F, there exists a maximal extension of F by [3], Theorem 3.3.

LEMMA 1.2. Let F be a real closed field and K be a maximal extension of F. Let