HIROSHIMA MATH. J. 23 (1993), 79–153

Continuity properties of potentials and Beppo-Levi-Deny functions

Dedicated to Professor M. Ohtsuka on the occasion of his seventieth birthday

Yoshihiro MIZUTA (Received November 11, 1991)

1. Introduction

In this paper we first study the behavior of Riesz potentials of functions near a given point, which may be assumed, without loss of generality, to be the origin. For $0 < \alpha < n$ and a nonnegative measurable function f on \mathbb{R}^n , we define $U_{\alpha}f$ by

$$U_{\alpha}f(x) = \int_{\mathbb{R}^n} |x - y|^{\alpha - n} f(y) \, dy.$$

It is easy to see that $U_{\alpha}f \neq \infty$ if and only if

(1.1)
$$\int_{\mathbb{R}^n} (1+|y|)^{\alpha-n} f(y) \, dy < \infty.$$

By Sobolev's imbedding theorem, we know that if f is a nonnegative function in $L^p(\mathbb{R}^n)$ satisfying (1.1), and if $\alpha p > n$, then $U_{\alpha}f$ is continuous at the origin (in fact, on \mathbb{R}^n); however, in case $\alpha p \le n$, $U_{\alpha}f$ may fail to be continuous at the origin. Thus, our main concern in this paper is the bordering case $p = n/\alpha$, and one of our aims is to find a condition on f, which is stronger than the condition that $f \in L^p(\mathbb{R}^n)$ with $p = n/\alpha$ but assures the continuity at 0 of $U_{\alpha}f$.

For this purpose, we assume that f satisfies a condition of the form:

(1.2)
$$\int_{\mathbb{R}^n} \Phi_p(f(y))\omega(|y|) \, dy < \infty.$$

Here $\Phi_p(r)$ and $\omega(r)$ are positive monotone functions on the interval $(0, \infty)$ with the following properties:

- (φ 1) $\Phi_p(r)$ is of the form $r^p \varphi(r)$, where $1 \le p < \infty$ and φ is a positive nondecreasing function on the interval $[0, \infty)$.
- $(\varphi 2)$ φ is of logarithmic type, that is, there exists $A_1 > 0$ such that