HIROSHIMA MATH. J. **24** (1994), 423–434

Oscillatory properties of systems of neutral differential equations

Dedicated to Professor Takaŝi Kusano on his sixtieth birthday

Anatoli F. IVANOV and Pavol MARUŠIAK (Received November 16, 1992)

Abstract. We study oscillatory properties of solutions and existence of nonoscillatory solutions with a power growth at the infinity for the system of differential equations of neutral type

$$\frac{d^{n_i}}{dt^{n_i}} [x_i(t) - a_i(t)x_i(h_i(t))] = p_i(t)f_i(x_{3-i}(g_i(t))), \qquad n_i \in \mathbb{N}, \ i = 1, 2.$$

1. Introduction

....

In this paper we consider systems of neutral differential equations of the form

$$\frac{d^{n_i}}{dt^{n_i}}[x_i(t) - a_i(t)x_i(h_i(t))] = p_i(t)f_i(x_{3-i}(g_i(t))), \qquad n_i \in \mathbb{N}, \ i = 1, \ 2.$$
(S)

The following conditions are assumed to hold without further mention:

- (a) $a_i, h_i, g_i, p_i: \mathbb{R}^+ \to \mathbb{R}, f_i: \mathbb{R} \to \mathbb{R}, i = 1, 2$, are continuous functions;
- (b) $h_i(t) \le t$ for $t \in \mathbb{R}^+$, $\lim_{t \to \infty} h_i(t) = \infty$, $\lim_{t \to \infty} g_i(t) = \infty$, i = 1, 2;
- (c) $zf_i(z) > 0$ for $z \neq 0$.

We put

$$x_i(t) - a_i(t)x_i(h_i(t)) = u_i(t), \quad i = 1, 2.$$

For $t_0 \ge 0$ denote

$$t_1 = \min \{ \inf_{t \ge t_0} h_i(t), \inf_{t \ge t_0} g_i(t), i = 1, 2 \}.$$

A vector function $X = (x_1, x_2)$ is defined to be a solution of system (S) if there exists a $t_0 \ge 0$ such that X is continuous on $[t_1, \infty)$, u_i is n_i times

The first author (A.F.I.) has been supported by the Alexander von Humboldt Stiftung during his stay at the Mathematisches Institut der Ludwig-Maximilians-Universität, München. He is grateful to both institutions for their support and hospitality.