Simple setting for white noise calculus using Bargmann space and Gauss transform

Yoshitaka Yokoi (Received September 1, 1993)

0. Introduction

Let E_0 be a real separable infinite-dimensional Hilbert space with an inner product $(\cdot,\cdot)_0$ and suppose that we are given a densely defined selfadjoint operator D of E_0 such that D^{-1} is of Hilbert-Schmidt type and D>1. Let $E\subset E_0\subset E^*$ be a real Gel'fand triplet rigged by the system of norms $\{\|D^p\cdot\|_0; p\in \mathbf{R}\}$ and $H\subset H_0\subset H^*$ be its complexification. The canonical bilinear forms defined by the pairs of elements $(x,\xi)\in E^*\times E$ and $(z,\eta)\in H^*\times H$ are denoted by $\langle x,\xi\rangle$ and $\langle z,\eta\rangle$, respectively. The functional $C(\xi)=\exp\left[-\frac{1}{2}\|\xi\|_0^2\right]$, which is continuous and positive definite in $\xi\in E$, determines a unique probability measure μ on E^* such that

$$\int_{E^*} \exp\left[\sqrt{-1} \langle x, \, \xi \rangle\right] d\mu(x) = \exp\left[-\frac{1}{2} \, \|\, \xi\,\|_0^2\right].$$

If $H^* = E^* + \sqrt{-1} E^*$ is identified with the product space $E^* \times E^*$, it is possible to define the product measure $v = \mu \times \mu$ on H^* . Let $\mathscr{P}(E^*)$ be the space of all polynomials in $\{\langle x, \xi \rangle; \xi \in E\}$ with complex coefficients and $\mathscr{P}(H^*)$ be the space of all polynomials in $\{\langle z, \xi \rangle; \xi \in H\}$, where $x \in E^*$ and $z \in H^*$. Then $\mathscr{P}(E^*)$ is dense in $(L^2) \equiv L^2(E^*, \mu)$. The L^2 -closure of $\mathscr{P}(H^*)$ is a proper subspace of $L^2(H^*, \nu)$. This subspace is denoted by (\mathfrak{F}_0) . It is called a Bargmann space ([4]).

For $\varphi(x) \in \mathscr{P}(E^*)$, $\varphi(x)$ has a natural analytic continuation $\varphi(w) \in \mathscr{P}(H^*)$ and its restriction to E^* is trivially the original $\varphi(x)$. Thus we can define a map $G: \mathscr{P}(E^*) \to \mathscr{P}(H^*)$ by

$$G\varphi(w) \equiv \int_{E^*} \varphi(x + w/\sqrt{2}) \, d\mu(x), \tag{0.1}$$

(ref. Kondrat'ev [17], Hida [10]). This map is called Gauss transform because of its similarity with Gauss transform $\mathcal{G}_t[F]$ of a function F(v) of one real variable v:

$$\mathscr{G}_{t}[F](u) = \int_{-\infty}^{\infty} F(v+u)(2\pi t)^{-1/2} \exp\left[-v^{2}/(2t)\right] dv.$$