Nonhomogeneity of Picard dimensions for negative radial densities

Dedicated to Professor Fumi-Yuki Maeda on his 60th birthday

Hideo IMAI

(Received November 26, 1993)

Consider the punctured open unit ball $\{0 < |x| < 1\}$ in the punctured Euclidean m-space $\mathbb{R}^m \setminus \{0\}$ $(m \ge 2)$ in which we regard the origin x = 0 as an ideal boundary component of $\mathbb{R}^m \setminus \{0\}$. For each s in (0, 1] we set $U_s = \{0 < |x| < s\}$, which is also an ideal boundary neighbourhood of the ideal boundary component x = 0 in $\mathbb{R}^m \setminus \{0\}$, so that $\Gamma_s : |x| = s$ is the relative boundary of U_s and the relative closure \overline{U}_s of U_s in $\mathbb{R}^m \setminus \{0\}$ is $U_s \cup \Gamma_s$. We set $U_1 = U$ and $\Gamma_1 = \Gamma$. A density P(x) on U_s is a locally Hölder continuous function defined on \overline{U}_s . Consider the time independent Schrödinger equation

(1)
$$L_P u(x) \equiv -\Delta u(x) + P(x)u(x) = 0$$

defined on \overline{U}_s , where Δ is the Laplacian $\Delta = \sum_{i=1}^m \frac{\partial^2}{\partial x_i^2}$. We are interested in the class $P(U_s, P)$ of nonnegative solutions of (1) in U_s with vanishing boundary values on Γ_s . Let $r\omega$ be the polar coordinate expression of x, where r = |x| and $\omega = (x/|x|) \in \Gamma$. We set

$$l(u) \equiv -\frac{s}{\omega_m} \int_{\Gamma} \left[\frac{\partial}{\partial r} u(r\omega) \right]_{r=s} d\omega,$$

where $d\omega$ is the area element on Γ , ω_m the area of Γ and $\partial/\partial r$ the outer normal derivative on Γ_s considered in \overline{U}_s . It is convenient to consider the subclass $P_1(U_s, P) \equiv \{u \in P(U_s, P); l(u) = 1\}$. Since $P_1(U_s, P)$ is convex, we can consider the set $ex.P_1(U_s, P)$ of extreme points of $P_1(U_s, P)$ and the cardinal number $\#(ex.P_1(U_s, P))$ of $ex.P_1(U_s, P)$ which will be referred to as the *Picard dimension* of (U_s, P) at x = 0, dim (U_s, P) in notation:

dim
$$(U_s, P) = #(ex.P_1(U_s, P)).$$

There exists a t in (0, 1] such that dim $P(U_s, P) = \dim P(U_t, P)$ for any s in (0, t] ([8], [7], [9]). Hence we can define the *Picard dimension* of P at x = 0, dim P in notation, by

$$\dim P = \lim_{s \downarrow 0} \dim (U_s, P).$$