An approach by difference to the porous medium equation with convection

Michiaki WATANABE (Received July 13, 1994)

Introduction

In this paper, we shall discuss the existence and then the uniqueness of the solution to the Cauchy problem for the porous medium equation with "convection" terms:

(1)
$$(\partial/\partial t)u = \Delta \varphi(u) + \sum_{i=1}^{N} F_i(u)_{x_i}, \qquad x \in \mathbb{R}^N, \ t > 0;$$

(2)
$$u(0, x) = u_0(x), \quad x \in \mathbb{R}^N.$$

(2) $u(0, x) = u_0(x), \qquad x \in \mathbb{R}^N.$ Here, $(\cdot)_{x_i} = \partial/\partial x_i \ (i = 1, \dots, N)$ and $\Delta = \sum_{i=1}^N (\partial/\partial x_i)^2$, and φ and $F_i(i = 1, \dots, N)$ are assumed to satisfy the conditions below:

- The function φ is strictly increasing, locally Lipschitz continuous on R^1 and satisfies $\varphi(0) = 0$;
- The functions F_i , $i = 1, \dots, N$, are defined on \mathbb{R}^1 , $F_i(0) = 0$, and $|F_i(r) - F_i(s)|/|\varphi(r) - \varphi(s)|$ are bounded for r, s in every bounded subinterval of \mathbb{R}^1 .

First, we shall provide a direct method for solving the problem (1)–(2) via the method of difference approximation:

$$\begin{cases} h^{-1}(u(t+h, x) - u(t, x)) \\ = \sum_{i=1}^{N} k^{-2}(T_i(k) - 2I + T_i(-k))\varphi(u(t, x)) \\ + \sum_{i=1}^{N} (2k)^{-1}(T_i(k) - T_i(-k))F_i(u(t, x)), \\ T_i(k)u(x) = u(x + ke_i), \ e_i = (0, \dots, 0, \ 1, \ 0, \dots, 0), \\ i = 1, \dots, N. \end{cases}$$

We shall explain in Section 1 that this scheme itself converges as $h, k \downarrow 0$ and the limits give rise to a semigroup $\{S(t): t \ge 0\}$ of contractions on $L^1(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ associated with the problem (1)–(2).

We have once tried an approach similar to that described in the above, to a simpler equation without "convection" terms: