HIROSHIMA MATH. J. **25** (1995), 595–621

Taylor expansion of Riesz potentials

Dedicated to Professor Fumi-Yuki Maeda on the occasion of his sixtieth birthday

Tetsu SHIMOMURA and Yoshihiro MIZUTA

(Received June 3, 1994)

Abstract: This paper deals with Riesz potentials $U_{\alpha}f(x) = \int |x - y|^{\alpha - n} f(y) dy$ of functions f satisfying Orlicz condition with weight ω in the form:

$$\int \Phi_p(|f(y)|)\omega(|y|)dy < \infty.$$

We are mainly concerned with the case when $\Phi_p(r)/r^p$, p > 1, is nondecreasing and $\omega(r)$ is of the form r^{β} , $-n < \beta \le \alpha p - n$. Letting ℓ be the integer such that $\ell \le \alpha - (n + \beta)/p < \ell + 1$, we examine when

$$\lim_{x\to 0, x\in\mathbb{R}^n-E} \left[\kappa(|x|)\right]^{-1} \left[U_a f(x) - P(x)\right] = 0$$

holds for an exceptional set E, a weight function κ and a polynomial P of degree at most ℓ .

1. Introduction

For $0 < \alpha < n$ and a nonnegative measurable function f on \mathbb{R}^n , we define $U_a f$ by

$$U_{\alpha}f(x) = \int_{\mathbb{R}^n} |x - y|^{\alpha - n} f(y) dy.$$

Here it is natural to assume that $U_{\alpha}f \neq \infty$, which is equivalent to

(1.1)
$$\int_{\mathbb{R}^n} (1+|y|)^{\alpha-n} f(y) dy < \infty.$$

To obtain general results, we treat functions f satisfying a condition of the form:

(1.2)
$$\int_{\mathbb{R}^n} \Phi_p(f(y))\omega(|y|)dy < \infty.$$