Oscillations of half-linear second order differential equations

Horng Jaan LI and Cheh Chih YEH

(Received March 14, 1994) (Revised June 14, 1994)

Abstract. Some oscillation criteria are given for the half-linear second order differential equation

$$[\boldsymbol{\Phi}(\boldsymbol{u}'(t))]' + c(t)\boldsymbol{\Phi}(\boldsymbol{u}(t)) = 0,$$

where $\Phi: \mathbb{R} \to \mathbb{R}$ is defined by $\Phi(s) = |s|^{p-2}s$ with a fixed number p > 1 and $c \in C([0, \infty), \mathbb{R})$. These results improve Willett's results.

1. Introduction

Define $\Phi : \mathbb{R} \to \mathbb{R}$ by $\Phi(s) = |s|^{p-2}s$, where p > 1 is a given number. Consider the half-linear second order differential equation

(E)
$$[\Phi(u'(t))]' + c(t)\Phi(u(t)) = 0,$$

where c(t) is a continuous function on $[0, \infty)$. We observe that if p = 2, then equation (E) reduces to the linear equation

(E₁)
$$u''(t) + c(t)u(t) = 0.$$

.

Let u be a positive solution of (E). If u' > 0 or u' < 0, then (E) reduces to the following Euler-Lagrange equations:

$$\frac{d}{dt} [u'(t)]^{p-1} + c(t)u^{p-1}(t) = 0$$

or

$$\frac{d}{dt} \left[-u'(t) \right]^{p-1} - c(t)u^{p-1}(t) = 0,$$

respectively.

By a solution of (E) we mean a function $u \in C^1[0, \infty)$ such that $\Phi(u') \in C^1[0, \infty)$, satisfying equation (E). Elbert [1] established the existence, uniqueness and extension to $[0, \infty)$ of solutions to the initial value problem for (E). We say that a nontrivial solution u of (E) is oscillatory if for any N > 0 there exists t > N such that u(t) = 0, otherwise, it is nonoscillatory.