HIROSHIMA MATH. J. **28** (1998), 1–5

A remark on homology localization

Tetsusuke OHKAWA

(Received January 20, 1994) (Received December 27, 1996)

ABSTRACT. A. K. Bousfield [1], [2] introduced the notion of localization of spaces and spectra with respect to homology functor h and proved the exsitence theorem. In this note we introduce a variation of this notion, (h, n)-localization, which interpolates a contractible space or spectrum pt and the localization $L_h(X)$ of the original space or spectrum X and prove the existence theorem along the arguments of [1], [2].

1. Statement of results

Let $\mathscr{C}, \mathscr{L}, \widetilde{\mathscr{C}}, \widetilde{\mathscr{I}}$ denote the categories of *CW*-complexes, *CW*-spectra and their homotopy categories respectively.

DEFINITION. Let \mathscr{A}, \mathscr{B} be categories and $\mathscr{F} : \mathscr{A} \to \mathscr{B}$ a functor.

i) $C \in Ob(\mathscr{A})$ is called \mathscr{F} -local if $f^* : \mathscr{A}(B, C) \to \mathscr{A}(A, C)$ is bijective for any $A, B \in Ob(\mathscr{A})$ and any $f : A \to B$ such that $\mathscr{F}(f)$ is an isomorphism.

ii) A morphism $g: A \to C$ is called an \mathscr{F} -localization map of A if C is \mathscr{F} -local and $\mathscr{F}(g)$ is an isomorphism. In this case C is called an \mathscr{F} -localization of A.

Let h be a generalized homology functor and n an integer. Let $\alpha = (h, n)$ be the functor defined by $\alpha(X) = (h_k(X)|k < n)$ from $\mathcal{D}(=\tilde{\mathscr{C}} \text{ or } \tilde{\mathscr{F}})$ to $\{(A_k|k < n); A_k \in Ab\}$, where Ab is the category of abelian groups. Then we can prove the following.

THEOREM 1. Let h be a generalized homology functor which is representable by a spectrum and $\alpha = (h, n)$ the functor above for an integer n. Then it holds that

i) Any object $X \in Ob(\mathcal{D})$ has an α -localization map.

ii) Let $f: X \to Y$ and $g: X \to Z$ be α -localization maps of X. Then there exisits a map $k: Y \to Z$ such that $k \circ f \simeq g$. Moreover, such a map k is always an isomorphism in the category \mathcal{D} .

Note that (h, n)-localization of X is unique up to homotopy by this theorem. This may be called also half h-localization and denoted by $L_h^n(X)$.