Нікозніма Матн. J. 30 (2000), 415–435

On non-singular stable maps of 3-manifolds with boundary into the plane

Naoki Shibata

(Received December 10, 1999) (Revised January 19, 2000)

ABSTRACT. Let M be a compact connected orientable 3-manifold with non-empty boundary and $f: M \to \mathbb{R}^2$ a stable map. In this paper we study the existence of an immersion or embedding lift of f to \mathbb{R}^n $(n \ge 3)$ with respect to the standard projection $\mathbb{R}^n \to \mathbb{R}^2$. We also characterize the orientable 3-dimensional handlebody in terms of stable maps which have only a restricted class of singularities. Moreover, by using the concept of an embedding lift of a certain map of a 2-dimensional polyhedron into \mathbb{R}^2 , we give a characterization of S^3 .

1. Introduction

Let M be a smooth manifold, $f: M \to \mathbb{R}^m$ a smooth map and $\pi: \mathbb{R}^n \to \mathbb{R}^m$ (n > m) a standard projection. Then we ask if there exists an immersion or embedding $g: M \to \mathbb{R}^n$ which satisfies $f = \pi \circ g$. Such a map g is called an *immersion* or *embedding lift* of f.

In this paper, M will be a compact connected orientable 3-manifold with non-empty boundary, of class C^{∞} . Let $f: M \to \mathbb{R}^2$ be a stable map. We ask if there exists an immersion or embedding lift of f to \mathbb{R}^n $(n \ge 3)$ with respect to the standard projection $\pi: \mathbb{R}^n \to \mathbb{R}^2$, $(x_1, x_2, \ldots, x_n) \mapsto (x_1, x_2)$. A point x in M is called a *singularity* if rank $df_x < 2$. S(f) denotes the set of singularities of f. Our main result is the following theorem.

THEOREM 1. Let M be a compact connected orientable 3-manifold with non-empty boundary and $f: M \to \mathbb{R}^2$ a stable map. We consider the condition (I): For any $r \in \mathbb{R}^2$, $f^{-1}(r)$ is either empty or homeomorphic to a finite disjoint union of closed intervals and points. Then the following two conditions are equivalent.

- (a) f has an immersion lift to \mathbf{R}^3 .
- (b) $S(f) = \emptyset$ and f satisfies the condition (I).

²⁰⁰⁰ Mathematics Subject Classification. 57R45, 57R42, 57M99.

Key words and phrases. 3-manifold, boundary, stable map, singularity, immersion lift, embedding lift, Stein factorization.