Liouville theorems of stable *F*-harmonic maps for compact convex hypersurfaces

Jiancheng LIU

(Received March 28, 2005) (Revised July 21, 2005)

ABSTRACT. Let M^n be a compact convex hypersurface in \mathbb{R}^{n+1} . In this paper, we proved firstly that if the principal curvatures λ_i of M^n satisfy $0 < \lambda_1 \leq \cdots \leq \lambda_n$ and $\lambda_n < \sum_{j=1}^{n-1} \lambda_j$, then there exist no nonconstant stable *F*-harmonic map between *M* and a compact Riemannian manifold when (1.2) or (1.3) holds (Theorem 1). This is a generalization or unification of the corresponding results for several varieties of harmonic map. Then, when the target manifold is δ -pinched, using a new estimate method, we obtain the Liouville-type theorem (Theorem 2) for stable *F*-harmonic map, which improves the results of M. Ara in [2].

1. Introduction

The instability for harmonic map (as well as *p*-harmonic map), from or into standard unit sphere S^n in Euclidean space \mathbb{R}^{n+1} , is well-known. For example, there exists no nonconstant stable harmonic (or *p*-harmonic) map either from S^n to any Riemannian manifold [12] (or [11]), or from any compact Riemannian manifold to S^n [6] (or [3]). In this paper, for a smooth function $F: [0, \infty) \rightarrow [0, \infty)$ such that F'(t) > 0 on $t \in (0, \infty)$, we concern with the instability of *F*-harmonic maps which is the generalization and union of the harmonic, *p*-harmonic or exponentially harmonic maps, introduced by M. Ara in [2].

M. Ara [1] proved that every stable F-harmonic map $u: M \to S^n$ is constant, provided that

(1.1)
$$\int_{M} |\mathrm{d}u|^{2} \left\{ |\mathrm{d}u|^{2} F''\left(\frac{|\mathrm{d}u|^{2}}{2}\right) + (2-n)F'\left(\frac{|\mathrm{d}u|^{2}}{2}\right) \right\} * 1 < 0.$$

In contrast with this, as far as I know there is few result when the source manifold is S^n . In this paper, however, we can prove the following instability

²⁰⁰⁰ Mathematics Subject Classification. 58E20.

Key words and phrases. F-harmonic maps, instability, compact convex hypersurfaces, δ -pinched manifolds.

Project supported by Chinese Tianyuan Mathematics Fund (A0324662) and National Natural Science Foundation of China (10571129).