Нікозніма Матн. J. **31** (2001), 367–370

A Liouville theorem for polyharmonic functions

David H. ARMITAGE

(Received December 28, 2000)

ABSTRACT. We give a short, elementary proof of a theorem which shows that if u is a polyharmonic function on \mathbf{R}^d and the growth of u^+ is suitably restricted, then u must be a polynomial.

1. Introduction

A typical point of \mathbf{R}^d , where $d \ge 2$, is denoted by $x = (x_1, \ldots, x_d)$. We write Δ for the Laplace operator $\sum_{j=1}^d \partial^2/\partial x_j^2$ and define $\Delta^1 = \Delta$ and $\Delta^{p+1} = \Delta \Delta^p$ when $p \in \mathbf{N}$. A function $u : \mathbf{R}^d \to \mathbf{R}$ is called *polyharmonic* of order p if $u \in C^{2p}(\mathbf{R}^d)$ and $\Delta^p u \equiv 0$ on \mathbf{R}^d . We denote the vector space of all such functions by \mathscr{H}^p . Thus, in particular, \mathscr{H}^1 is the space of all harmonic functions on \mathbf{R}^d . The positive part of a function $u : \mathbf{R}^d \to \mathbf{R}$ is denoted by u^+ ; that is, $u^+(x) = \max\{u(x), 0\}$ for each x in \mathbf{R}^d .

A classical Liouville theorem for harmonic functions may be stated as follows: if $u \in \mathscr{H}^1$ and u^+ is bounded on \mathbb{R}^d , then u is constant. A generalization, due to Kuran [4, Theorem 2], shows that if $u \in \mathscr{H}^p$ and u^+ is bounded on \mathbb{R}^d , then u is a polynomial of degree at most 2p - 2. Several authors have given further generalizations. To describe their results, we introduce some more notation. The open ball and the sphere of radius r centred at the origin 0 of \mathbb{R}^d are denoted by B(r) and S(r). We denote d-dimensional Lebesgue measure by λ and (d-1)-dimensional surface measure by σ . Some known results are summarized in the following theorem.

THEOREM A. Let $u \in \mathscr{H}^p$, where $p \in \mathbb{N}$, and let s be a number such that s > 2p - 2. The following statements are equivalent:

- (1) *u* is a polynomial of degree less than s;
- (2) $\lim_{r \to +\infty} r^{-s-d+1} \int_{S(r)} u^+ d\sigma = 0;$
- (3) lim inf_{$r\to+\infty$} $r^{-s-d} \int_{B(r)} u^+ d\lambda = 0;$
- (4) $\liminf_{r \to +\infty} (r^{-s} \max\{u^+(x) : x \in S(r)\}) = 0.$

²⁰⁰⁰ Mathematics Subject Classification. 31B30

Key words and phrases. Polyharmonic, polynomial, Liouville theorem, harmonic