Нікозніма Матн. J. **31** (2001), 331–343

Congruent numbers over real quadratic fields

Masatomo TADA

(Received November 6, 2000) (Revised January 18, 2001)

ABSTRACT. Let $m \ (\neq 1)$ be a square-free positive integer. We say that a positive integer *n* is a congruent number over $\mathbf{Q}(\sqrt{m})$ if it is the area of a right triangle with three sides in $\mathbf{Q}(\sqrt{m})$. We put $K = \mathbf{Q}(\sqrt{m})$. We prove that if $m \neq 2$, then *n* is a congruent number over *K* if and only if $E_n(K)$ has a positive rank, where $E_n(K)$ denotes the group of *K*-rational points on the elliptic curve E_n defined by $y^2 = x^3 - n^2 x$. Moreover, we classify right triangles with area *n* and three sides in *K*.

1. Introduction

A positive integer *n* is called a congruent number if it is the area of a right triangle whose three sides have rational lengths. For each positive integer *n*, let E_n be the elliptic curve over **Q** defined by $y^2 = x^3 - n^2 x$, and $E_n(k)$ the group of *k*-rational points on E_n for a number field *k*. By the following well-known theorem, we have a condition such that *n* is a congruent number in terms of $E_n(\mathbf{Q})$.

THEOREM A (cf. [4, p. 46]). A positive integer n is a congruent number if and only if $E_n(\mathbf{Q})$ has a point of infinite order.

Let ∞ be the point at infinity of $E_n(\mathbf{Q})$ which is regarded as the identity for the group structure on E_n . We note that, in the proof of Theorem A, we use that the torsion subgroup of $E_n(\mathbf{Q})$ consists of four elements ∞ , (0,0), and $(\pm n, 0)$ of order 1 or 2.

For any positive integer *n*, determining whether it is a congruent number or not is a classical problem. In relation to Theorem A, some important results are known. By the result of J. Coates and A. Wiles [2] for elliptic curves *E* over **Q** with complex multiplication, if the rank of $E_n(\mathbf{Q})$ is positive, then $L(E_n, 1) = 0$, where $L(E_n, s)$ is the Hasse-Weil *L*-function of E_n/\mathbf{Q} . Assuming the weak Birch and Swinnerton-Dyer conjecture [1], it is known that if $L(E_n, 1)$ = 0, then the rank of $E_n(\mathbf{Q})$ is positive. F. R. Nemenzo [7] showed that for n < 42553, the weak Birch and Swinnerton-Dyer conjecture holds for E_n , i.e.,

²⁰⁰⁰ Mathematics Subject Classification. 11G05.

Key words and phrases. congruent number, elliptic curve, torsion subgroup.