On products of distributions involving delta function and its partial derivatives

Sandra Monica MoLINA (Received June 6, 2003) (Revised September 30, 2003)

ABSTRACT. Li Banghe and Li Yaqing defined in [1] the product $S \circ T$ as a hyperdistribution (we call hyperdistributions to the complex linear functional of $\mathcal{D}(\mathbf{R}^n)$ in ${}^{\rho}\mathbf{C}'$) for S and T in $D'(\mathbf{R}^n)$ and they calculated $\delta \circ \delta$. In this paper, we shall obtain expressions for the products $\delta \circ \frac{\partial}{\partial x_i} \delta$ and $\frac{\partial}{\partial x_i} \delta \circ \frac{\partial}{\partial x_i} \delta$ for $i = 1, \ldots, n$, and for even n, these products have the Hadamard finite part nonzero.

1. Introduction

In this section we shall define the product "o". This definition involves a harmonic representation of distributions and Non-Standard Analysis. Let C^* and R^* be nonstandard models for the complex field and the real field respectively, and let ρ be a positive infinitesimal. Let Θ denote the set of all infinitesimal in C^* . Let

 ${}^{\rho}C = \{x \in C^*: \text{ for some finite integer } n, |x| < \rho^{-n}\}, \quad {}^{\rho}C' = {}^{\rho}C/\Theta.$

We call hyperdistributions the complex linear functional of $\mathcal{D}(\mathbf{R}^n)$ in ${}^{\rho}\mathbf{C}'$.

DEFINITION 1.1. Let $T \in \mathcal{D}'(\mathbf{R}^n)$ and u(x, y) be a harmonic function in $\mathbf{R}^{n+1}_+ = \{(x, y) : x \in \mathbf{R}^n, y > 0\}$ so that $\lim_{y \to 0_+} u(x, y) = T$ in the sense of $\mathcal{D}'(\mathbf{R}^n)$. Then u(x, y) is called a harmonic function associated with T or harmonic representation of T.

LEMMA 1.2. Let $S, T \in \mathcal{D}'(\mathbf{R}^n)$ and \hat{S}, \hat{T} be harmonic representations of S and T respectively, and ${}^*\hat{S}, {}^*\hat{T}$ denote the nonstandard extensions of \hat{S}, \hat{T} respectively. For any $\phi \in \mathcal{D}(\mathbf{R}^n)$,

$$\langle \hat{S}(x,\rho)^* \hat{T}(x,\rho), \hat{\phi}(x) \rangle \in {}^{\rho}C.$$

Lemma 1.3. Let $S, T \in \mathcal{D}'(\mathbf{R}^n)$. If \hat{S}_1, \hat{S}_2 and \hat{T}_1, \hat{T}_2 are two harmonic representations of S and T respectively, then for any $\phi \in \mathcal{D}(\mathbf{R}^n)$, we have

²⁰⁰⁰ Mathematics Subject Classification. 46F05, 46F10, 03H05, 46F20. Keywords and phrases. nonstandard analysis, distribution, products.