Asymptotic expansion of the null distribution of the modified normal likelihood ratio criterion for testing $\Sigma = \Sigma_0$ under nonnormality

Hirokazu Yanagihara, Chieko Matsumoto and Tetsuji Tonda (Received June 3, 2003) (Revised October 1, 2003)

ABSTRACT. This paper is concerned with the null distribution of the modified normal likelihood ratio criterion for testing the null hypothesis that a covariance matrix is a given one, i.e., $\Sigma = \Sigma_0$, under nonnormality. We obtain an asymptotic expansion of the null distribution of the test statistic up to the order n^{-1} , where n is the sample size, under nonnormality by using an Edgeworth expansion of the density function of a sample covariance matrix.

1. Introduction

Let x_1, \ldots, x_n be $p \times 1$ random vevtors, where n is the sample size. It is assumed that each vector x_j is *i.i.d.* with the mean $E(x) = \mu$ and the covariance matrix $Cov(x) = \Sigma$. Consider testing the null hypothesis that the covariance matrix is a given one, i.e.,

$$H_0: \Sigma = \Sigma_0. \tag{1.1}$$

Then a commonly used test statistic is

$$T = -2\log L,\tag{1.2}$$

which is a modified likelihood ratio statistic for a multivariate normal population, where

$$L = \left(\frac{e}{n-1}\right)^{p(n-1)/2} |S\Sigma_0^{-1}|^{(n-1)/2} \exp\left\{-\frac{1}{2} \operatorname{tr}(S\Sigma_0^{-1})\right\},$$

$$S = \sum_{j=1}^n (x_j - \bar{x})(x_j - \bar{x})', \qquad \bar{x} = \frac{1}{n} \sum_{j=1}^n x_j.$$

²⁰⁰⁰ Mathematics Subject Classification. primary 62E20, secondly 62H15.

Key words and phrases. Asymptotic expansion, Bartlett correction, Edgeworth expansion, Model misspecification, Nonnormality, Null distribution, Robustness, Testing covariance structure, Weighted sum of chi-squared variables.