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Abstract. Our first aim in this paper is to generalize Bôcher’s theorem for functions u

whose Riesz measure m ¼ Dmu is nonnegative in the punctured unit ball B0. In fact, if

u satisfies a certain integral condition and m ¼ Dmub 0 in B0, then it is shown that u

can be written as the sum of a generalized potential of m and a polyharmonic function

on B. This is nothing but the Laurent series expansion for u.

The next aim is to give a polyharmonic version of the recent results by Riihentaus

[11] concerning removability of sets for subharmonic functions.

1. Introduction and statement of results

Let Rn be the n-dimensional Euclidean space with a point x ¼
ðx1; x2; . . . ; xnÞ. For a multi-index l ¼ ðl1; l2; . . . ; lnÞ, we set
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We denote by Bðx; rÞ the open ball centered at x with radius r > 0, whose

boundary is written as Sðx; rÞ ¼ qBðx; rÞ. We also denote by B the unit ball

Bð0; 1Þ and by B0 the punctured unit ball B� f0g.
A real-valued function u on an open set GHRn is called polyharmonic

of order m on G if u A C2mðGÞ and Dmu ¼ 0 on G, where m is a positive

integer, D denotes the Laplacian and Dmu ¼ Dm�1ðDuÞ (cf. [2], [10]). We

denote by HmðGÞ the space of polyharmonic functions of order m on G. In

particular, u is harmonic on G if u A H 1ðGÞ.
The fundamental solution of Dm is written as R2m, that is,

R2mðxÞ ¼
amjxj2m�n if 2m� n is not an even nonnegative integer,

amjxj2m�n logð1=jxjÞ if 2m� n is an even nonnegative integer,
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