Нікозніма Матн. J. **33** (2003), 31–42

Removability of sets for sub-polyharmonic functions

Toshihide FUTAMURA, Kyoko KISHI and Yoshihiro MIZUTA

(Received January 22, 2002) (Revised April 25, 2002)

ABSTRACT. Our first aim in this paper is to generalize Bôcher's theorem for functions u whose Riesz measure $\mu = \Delta^m u$ is nonnegative in the punctured unit ball \mathbf{B}_0 . In fact, if u satisfies a certain integral condition and $\mu = \Delta^m u \ge 0$ in \mathbf{B}_0 , then it is shown that u can be written as the sum of a generalized potential of μ and a polyharmonic function on **B**. This is nothing but the Laurent series expansion for u.

The next aim is to give a polyharmonic version of the recent results by Riihentaus [11] concerning removability of sets for subharmonic functions.

1. Introduction and statement of results

Let \mathbf{R}^n be the *n*-dimensional Euclidean space with a point $x = (x_1, x_2, \dots, x_n)$. For a multi-index $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$, we set

$$\begin{aligned} |\lambda| &= \lambda_1 + \lambda_2 + \dots + \lambda_n, \\ x^{\lambda} &= x_1^{\lambda_1} x_2^{\lambda_2} \dots x_n^{\lambda_n} \end{aligned}$$

and

$$D^{\lambda} = \left(\frac{\partial}{\partial x_1}\right)^{\lambda_1} \left(\frac{\partial}{\partial x_2}\right)^{\lambda_2} \dots \left(\frac{\partial}{\partial x_n}\right)^{\lambda_n}.$$

We denote by B(x,r) the open ball centered at x with radius r > 0, whose boundary is written as $S(x,r) = \partial B(x,r)$. We also denote by **B** the unit ball B(0,1) and by **B**₀ the punctured unit ball **B** – {0}.

A real-valued function u on an open set $G \subset \mathbb{R}^n$ is called polyharmonic of order m on G if $u \in C^{2m}(G)$ and $\Delta^m u = 0$ on G, where m is a positive integer, Δ denotes the Laplacian and $\Delta^m u = \Delta^{m-1}(\Delta u)$ (cf. [2], [10]). We denote by $H^m(G)$ the space of polyharmonic functions of order m on G. In particular, u is harmonic on G if $u \in H^1(G)$.

The fundamental solution of Δ^m is written as R_{2m} , that is,

$$R_{2m}(x) = \begin{cases} \alpha_m |x|^{2m-n} & \text{if } 2m-n \text{ is not an even nonnegative integer,} \\ \alpha_m |x|^{2m-n} \log(1/|x|) & \text{if } 2m-n \text{ is an even nonnegative integer,} \end{cases}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 31B30

Key words and phrases. polyharmonic functions, isolated singularities, Bôcher's theorem, Laurent series expansion, Riesz decomposition, removability of sets