A NOTE ON SEMIGROUPS OF MARKOV OPERATORS ON $C(X)$

By Masayoshi Eguchi and Yōichi Kijima

1. Introduction.

Let X be a compact Hausdorff space, and let $C(X)$ be the commutative C^{*} algebra of all continuous complex functions on X. A bounded linear operator T of $C(X)$ into itself is called a Markov operator it $T \geqq 0,\|T\|=1$, and $T 1=1$.

Let Σ be a semigroup of Markov operators. For each $f \in C(X), \overline{\operatorname{co}}\{T f: T \in \Sigma\}$ denotes the closed convex hull of $\{T f: T \in \Sigma\} . g \in C(X)$ is called a Σ-invariant function if $T g=g$ for all $T \in \Sigma$.

In ergodic theory the following conditions on Σ are interesting: (I) Each $\overline{\mathrm{co}}\{T f: T \in \Sigma\}$ contains exactly one Σ-invariant function. (II) Each $\overline{\mathrm{co}}\{T f: T \in \Sigma\}$ contains at least one Σ-invariant function. In Theorem 1, we shall give some necessary and sufficient conditions that (I) holds.

Let $C(X)^{*}$ be the dual Banach space of $C(X) . \quad \mu \in C(X)^{*}$ is called a state if $\mu \geqq 0$ and $\|\mu\|=\mu(1)=1$. If T is a Markov operator and if μ is a state, then $T^{*} \mu$ is also a state where T^{*} denotes the adjoint operator of T. A state μ is called a Σ-invariant state if $T^{*} \mu=\mu$ for all $T \in \Sigma$.

Let K_{Σ} be the set of all Σ-invariant states. Then K_{Σ} is a weak*-compact convex subset of $C(X)^{*} . \mu \in K_{\Sigma}$ is called an extremal Σ-invariant state if μ is an extreme point of K_{Σ}.

A proper closed ideal I of $C(X)$ is called a Σ-invariant ideal if $T(I) \subset I$ for all $T \in \Sigma$. There exists at least one maximal Σ-invariant ideal, and each Σ invariant ideal is contained in some maximal Σ-invariant ideal. If μ is a Σ invariant state, then $I_{\mu}=\{f \in C(X): \mu(|f|)=0\}$ is a Σ-invariant ideal.

In Theorem 2, we shall show that if (I) holds, then $\mu \rightarrow I_{\mu}$ is a bijection of the set of all extremal Σ-invariant states onto the family of all maximal Σ. invariant ideals.

Our discussion is much due to Deleeuw and Glicksberg [1], Schaefer [2], Sine [3], and Takahashi [4].

2. Theorems.

co Σ denotes the set of all finite convex linear combinations of operators in Σ. co Σ is also a semigroup of Markov operators. We note that $\overline{c o}\{T f$:

[^0]
[^0]: Received May 17, 1973.

