M. EGUCHI AND Y. KIJIMA KODAI MATH. SEM. REP. **26** (1975), 109–112

A NOTE ON SEMIGROUPS OF MARKOV OPERATORS ON C(X)

By Masayoshi Eguchi and Yōichi Kijima

1. Introduction.

Let X be a compact Hausdorff space, and let C(X) be the commutative C*algebra of all continuous complex functions on X. A bounded linear operator T of C(X) into itself is called a Markov operator it $T \ge 0$, ||T||=1, and T1=1.

Let Σ be a semigroup of Markov operators. For each $f \in C(X)$, $\overline{\operatorname{co}}\{Tf: T \in \Sigma\}$ denotes the closed convex hull of $\{Tf: T \in \Sigma\}$. $g \in C(X)$ is called a Σ -invariant function if Tg=g for all $T \in \Sigma$.

In ergodic theory the following conditions on Σ are interesting: (I) Each $\overline{\operatorname{co}}\{Tf: T \in \Sigma\}$ contains exactly one Σ -invariant function. (II) Each $\overline{\operatorname{co}}\{Tf: T \in \Sigma\}$ contains at least one Σ -invariant function. In Theorem 1, we shall give some necessary and sufficient conditions that (I) holds.

Let $C(X)^*$ be the dual Banach space of C(X). $\mu \in C(X)^*$ is called a state if $\mu \ge 0$ and $\|\mu\| = \mu(1) = 1$. If T is a Markov operator and if μ is a state, then $T^*\mu$ is also a state where T^* denotes the adjoint operator of T. A state μ is called a Σ -invariant state if $T^*\mu = \mu$ for all $T \in \Sigma$.

Let K_{Σ} be the set of all Σ -invariant states. Then K_{Σ} is a weak*-compact convex subset of $C(X)^*$. $\mu \in K_{\Sigma}$ is called an extremal Σ -invariant state if μ is an extreme point of K_{Σ} .

A proper closed ideal I of C(X) is called a Σ -invariant ideal if $T(I) \subset I$ for all $T \in \Sigma$. There exists at least one maximal Σ -invariant ideal, and each Σ invariant ideal is contained in some maximal Σ -invariant ideal. If μ is a Σ invariant state, then $I_{\mu} = \{f \in C(X) : \mu(|f|) = 0\}$ is a Σ -invariant ideal.

In Theorem 2, we shall show that if (I) holds, then $\mu \rightarrow I_{\mu}$ is a bijection of the set of all extremal Σ -invariant states onto the family of all maximal Σ -invariant ideals.

Our discussion is much due to Deleeuw and Glicksberg [1], Schaefer [2], Sine [3], and Takahashi [4].

2. Theorems.

co Σ denotes the set of all finite convex linear combinations of operators in Σ . co Σ is also a semigroup of Markov operators. We note that $\overline{co} \{Tf:$

Received May 17, 1973.