FIBRED SPACES WITH ALMOST COMPLEX STRUCTURES ## By MITSUE AKO Dedicated to Professor Yosio Mutō on his sixtieth birthday ## Introduction. Many papers on the theory of submersion, together with immersions, have been published in recent years (e.g. [1], [4], [8], [9], [17]). A mapping σ from a manifold \tilde{M}^n onto a manifold M^m is called a *submersion* if its differential σ_* is of rank m at any point of \tilde{M}^n , where n is larger than m. It seems, generally speaking, that there are two directions of investigating submersions. One is to discuss the existence of a submersion in a given manifold and the other is to study a manifold in which a submersion is assumed to be given a priori. The submersion has also been studied as a fibred space. The concept of a fibred space has been used, since 1922, in unified field theories and in the theory of projective connections. The purpose of the present paper is to study fibred spaces with a projectable Riemannian metric and a projectable almost complex structure. In §§ 1 and 2 definitions and lemmas are stated in the most general case for the later use. We discuss in § 3, by use of tensor analysis, the properties of a fibred Riemannian manifold in detail. The structure equations for a fibred space are prepared in § 4. In § 5, we assume that \tilde{M} and fibres are both of even dimensional and we introduce in \tilde{M} an almost complex structure. First we assume that each fibre is an invariant subspace of \tilde{M} and next we treat with more general case. For the case in which the dimension of a fibre is odd, especially 1-dimensional, see [7], where an almost contact structure is introduced in \tilde{M} . ## § 1. Preliminaries. Let \widetilde{M} and M be differentiable¹⁾ manifolds of dimension n and m respectively, where n is larger than m. We assume that there is given a differentiable submersion σ from \widetilde{M} to M, that is, σ is a differentiable mapping from \widetilde{M} onto M whose differential σ_* is of rank m at each point \widetilde{P} of \widetilde{M} . Therefore, the complete inverse image \mathcal{F}_P of $P \in M$ is an n-m dimensional closed submanifold of \widetilde{M} . We call \mathcal{F}_P a fibre over P. Throughout this paper we assume that every fibre is Received October 13, 1971. ¹⁾ Differentiability is always assumed to be of C^{∞} .