FIBRED SPACES WITH ALMOST COMPLEX STRUCTURES

By MITSUE AKO

Dedicated to Professor Yosio Mutō on his sixtieth birthday

Introduction.

Many papers on the theory of submersion, together with immersions, have been published in recent years (e.g. [1], [4], [8], [9], [17]). A mapping σ from a manifold \tilde{M}^n onto a manifold M^m is called a *submersion* if its differential σ_* is of rank m at any point of \tilde{M}^n , where n is larger than m. It seems, generally speaking, that there are two directions of investigating submersions. One is to discuss the existence of a submersion in a given manifold and the other is to study a manifold in which a submersion is assumed to be given a priori. The submersion has also been studied as a fibred space. The concept of a fibred space has been used, since 1922, in unified field theories and in the theory of projective connections.

The purpose of the present paper is to study fibred spaces with a projectable Riemannian metric and a projectable almost complex structure. In §§ 1 and 2 definitions and lemmas are stated in the most general case for the later use. We discuss in § 3, by use of tensor analysis, the properties of a fibred Riemannian manifold in detail. The structure equations for a fibred space are prepared in § 4. In § 5, we assume that \tilde{M} and fibres are both of even dimensional and we introduce in \tilde{M} an almost complex structure. First we assume that each fibre is an invariant subspace of \tilde{M} and next we treat with more general case. For the case in which the dimension of a fibre is odd, especially 1-dimensional, see [7], where an almost contact structure is introduced in \tilde{M} .

§ 1. Preliminaries.

Let \widetilde{M} and M be differentiable¹⁾ manifolds of dimension n and m respectively, where n is larger than m. We assume that there is given a differentiable submersion σ from \widetilde{M} to M, that is, σ is a differentiable mapping from \widetilde{M} onto M whose differential σ_* is of rank m at each point \widetilde{P} of \widetilde{M} . Therefore, the complete inverse image \mathcal{F}_P of $P \in M$ is an n-m dimensional closed submanifold of \widetilde{M} . We call \mathcal{F}_P a fibre over P. Throughout this paper we assume that every fibre is

Received October 13, 1971.

¹⁾ Differentiability is always assumed to be of C^{∞} .