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Introduction.

Many papers on the theory of submersion, together with immersions, have
been published in recent years (e.g. [1], [4], [8], [9], [17]). A mapping σ from a
manifold Mn onto a manifold Mm is called a submersion if its differential σ* is of
rank m at any point of Mn, where n is larger than m. It seems, generally speak-
ing, that there are two directions of investigating submersions. One is to discuss
the existence of a submersion in a given manifold and the other is to study a
manifold in which a submersion is assumed to be given a priori. The submer-
sion has also been studied as a fibred space. The concept of a fibred space has
been used, since 1922, in unified field theories and in the theory of projective
connections.

The purpose of the present paper is to study fibred spaces with a projectable
Riemannian metric and a projectable almost complex structure. In §§ 1 and 2
definitions and lemmas are stated in the most general case for the later use. We
discuss in § 3, by use of tensor analysis, the properties of a fibred Riemannian
manifold in detail. The structure equations for a fibred space are prepared in § 4.
In § 5, we assume that M and fibres are both of even dimensional and we in-
troduce in M an almost complex structure. First we assume that each fibre is an
invariant subspace of M and next we treat with more general case. For the case
in which the dimension of a fibre is odd, especially 1-dimensional, see [7], where
an almost contact structure is introduced in M.

§ 1. Preliminaries.

Let M and M be differentiable1 > manifolds of dimension n and m respectively,
where n is larger than m. We assume that there is given a differentiable sub-
mersion σ from M to M, that is, σ is a differentiable mapping from M onto M
whose differential a* is of rank m at each point P of M. Therefore, the complete
inverse image £Fp of PeΛf is an n—m dimensional closed submanifold of M. We
call £FP a fibre over P. Throughout this paper we assume that every fibre is
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1) Differentiability is always assumed to be of C°°.
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