ON CERTAIN SUBMANIFOLDS OF CODIMENSION 2 OF A LOCALLY FUBINIAN MANIFOLD

By U-Hang Ki¹⁾

§0. Introduction.

Blair, Ludden and Yano [2] introduced a structure which is natually defined in a submanifold of codimension 2 of an almost complex manifold.

Yano and Okumura introduced what they call an (f, g, u, v, λ) -structure and gave a characterization of even-dimensional sphere [5]. They also studied submanifold of codimension 2 of an even-dimensional Euclidean space which admits a normal (f, g, u, v, λ) -structure [6]. The main theorem of [6] is the following

THEOREM. Let a complete differentiable submanifold M of codimension 2 of an even-dimensional Euclidean space be such that the connection induced in the normal bundle is trivial. If the (f, g, u, v, λ) -structure induced on M is normal, then M is a sphere, a plane, or a product of a sphere and a plane.

In the present paper, we study submanifolds of codimension 2 of a locally Fubinian manifold which admits an (f, g, u, v, λ) -structure.

In §1, we consider a submanifold of codimension 2 of a Kählerian manifold and find differential equations which the induced (f, g, u, v, λ) -structure satisfies.

In §2, we prove a series of lemmas which are valid for a certain (f, g, u, v, λ) -structure.

In §3 we study submanifolds with normal (f, g, u, v, λ) -structure in a locally Fubinian manifold.

In the last § 4, we study a submanifold of codimension 2 such that the linear transformations h_j^i and k_j^i which are defined by the second fundamental tensors commute with f_j^i in a locally Fubinian manifold.

§1. Submanifolds of codimension 2 of a Kählerian manifold ([5]).

Let \tilde{M} be a (2n+2)-dimensional Kählerian manifold covered by a system of coordinate neighborhoods $\{\tilde{U}; y^{\epsilon}\}$, where here and in the sequel the indices κ , λ , μ , ν , \cdots run over the range $\{1, 2, \dots, 2n+2\}$, and let $(F_{\mu}{}^{\epsilon}, G_{\mu\lambda})$ be the Kählerian structure of \tilde{M} , that is,

Received December 17, 1970.

¹⁾ The author wishes to thank Professor M. Okumura who kindly pointed out uncertain places and gave him many valuable suggestions.