THE STRONG CONVERSE THEOREM IN THE DECODING SCHEME OF LIST SIZE L

By Shōichi Nishimura

1. Introduction.

The coding theorem, discovered by Shannon [5], states that information can be transmitted with arbitrarily small error probability by means of words lengthening. A question will arise on what will become of an asymptotic behavior of an error probability. Denoting by M the number of input messages and by N the length of corresponding input words, the rate is defined as $R=(1 / N) \log M$. If we lengthen the word with a fixed rate, the error probability approaches exponentially zero. For a broad class of channels its first exponential error-bound was given by Fano (1956). Its precise upper estimate was obtained by Gallager [4], and its precise lower estimate was obtained by Shannon, Gallager, and Berlekamp [6].

On the other hand, the weak converse theorem for Shannon's coding theorem was proved by Feinstein [3] using Fano's inequality. It states that if the rate is above the channel capacity, for a sufficiently large N the error probability is positive. Wolfowitz [7] proved the strong converse theorem; there exists a positive constant K such that there does not exist $M=e^{N C+K} \sqrt{\bar{N}}$ input messages such that its error probability is below $\lambda>0$. In this paper we derive the strong converse theorem in the decoding scheme of list size L. The rate is defined as

$$
R=\frac{1}{N} \log \frac{M}{L}
$$

If $R>C+\varepsilon$, then the average error probability approaches one. The decoding scheme of list size L which was mentioned in Shannon, Gallager, and Berlekamp [6], is that the decoder, rather than mapping the output words into a single message, maps it into a list of messages. If the transmitted source message is not on the list of decoded message, we say that a list decoding error has occurred.

2. Channel and list decoding.

Let input alphabets be $i=1, \cdots, I(I \leqq a)$ and output alphabets be $j=1, \cdots, J(J \leqq a)$. Let X_{N} be the set of all input words of length N that can be transmitted, and let Y_{N} be the set of all output words of length N that can be received. Let $P\left(y \mid x_{m}\right)$, for $x_{m} \in X_{N}$ and $y \in Y_{N}$, be the conditional probability of received word y, given that

Received June 17, 1969.

