ON ORISPHERICAL SUBGROUPS OF A SEMISIMPLE LIE GROUP

By Shigeya Maruyama

1. Let \mathfrak{g} be a real semisimple Lie algebra, and let \mathcal{G} be a Lie group whose Lie algebra is \mathfrak{g} . We take a one-parameter subgroup $g(t) = \exp(tX)$, $X \in \mathfrak{g}$, and define a orispherical subgroup \mathcal{Z} relative to g(t) as follows.

DEFINITION 1. \mathcal{Z} is the set of all $z \in \mathcal{G}$ for which

 $\lim g(t)zg(t)^{-1} = e$ (neutral element of \mathcal{G}).

Orispherical subgroups were introduced by Gelfand, Graev, and Pyatetskii-Shapiro, and played an important role in the theory of representations and automorphic functions; [1], [2]. The purpose of this note is to show that \mathcal{Z} is a connected closed subgroup of \mathcal{Q} .

2. First of all, \mathbb{Z} is easily seen to be connected. Let $z \in \mathbb{Z}$, then $\exp(tX) \cdot z \cdot \exp(-tX) = z_t \in \mathbb{Z}$ by definition. Of course z_t is continuous in t, and $z_t \to e$ as $t \to \infty$. Denote by \mathbb{Z}_0 the connected component of e of \mathbb{Z} . Since \mathbb{Z}_0 is open in \mathbb{Z} , we have $z_{t_0} \in \mathbb{Z}_0$ for sufficiently large t_0 . But then $z_t (0 \le t \le t_0)$ connects z to z_{t_0} , hence $z \in \mathbb{Z}_0$. This proves connectedness of \mathbb{Z} .

3. It is a classical result that any $X \in \mathfrak{g}$ can be expressed by a unique sum Y+N, where $Y, N \in \mathfrak{g}$ satisfy the conditions: i) [Y, N]=0; ii) ad Y is semisimple and all of its eigen values are real; iii) ad N has only pure imaginary eigen values. Here ad means the adjoint representation of \mathfrak{g} .

Let Ad be the adjoint representation of \mathcal{G} into the set of Aut (g) of all automorphisms of the Lie algebra g. We denote the image Ad \mathcal{G} of \mathcal{G} by Int (g) Then it is obvious that if $z \in \mathbb{Z}$, we have

 $\lim \operatorname{Ad} (\exp (tX)) \cdot \operatorname{Ad} z \cdot \operatorname{Ad} (\exp (-tX)) = E \quad (\text{Identity}).$

In Int (g), we consider the subset Z of all $\zeta \in Int(g)$ for which

$$\lim \operatorname{Ad} (\exp (tX)) \cdot \zeta \cdot \operatorname{Ad} (\exp (-tX)) = E.$$

Now we put ad $X=\xi$, ad $Y=\eta$, ad $N=\nu$, then

 $\begin{aligned} & \hat{\xi} = \eta + \nu, \quad \eta \nu = \nu \eta, \\ & \text{Ad} \left(\exp \left(tX \right) \right) = e^{t\hat{\xi}} = e^{t\nu} e^{t\eta} \end{aligned}$

Received July 6, 1967.