CORRECTION TO THE PAPER " THE f-STRUCTURE INDUCED ON SUBMANIFOLDS OF COMPLEX
 AND ALMOST COMPLEX SPACES "

By Kentaro Yano and Shigeru Ishihara

The paragraph from 21st line to 28th line on p. 145 of our paper "The f-structure induced on submanifolds of complex and almost complex spaces", vol. 18 (1966), pp. 120-160 should be replaced by the following:

We now consider an f-submanifold V in an almost Hermitian space W. We suppose that there exists a subspace N_{P} in the holomorphic extension $T_{\mathrm{P}}^{H}(V)$ of tangent space $T_{\mathrm{P}}(V)$ at each point P of V such that N_{P} is orthogonal to $T_{\mathrm{P}}(V)$ and $T_{\mathrm{P}}^{H}(V)=T_{\mathrm{P}}(V)+N_{\mathrm{P}}$ (direct sum), $F\left(N_{\mathrm{P}}\right) \subset T_{\mathrm{P}}(V)$. Then N_{P} is $(n-r)$-dimensional if $\operatorname{dim} H=r$ and $\operatorname{dim} V=n$. If this is the case, we call the given f-submanifold V a metric f-submanifold in the almost Hermitian space W. For the sake of simplicity, we call sometimes a metric f-submanifold simply a f-submanifold in an almost Hermitian space. When V is a metric f-submanifold, there exists uniquely a subspace \bar{N} of $N-2 n+r$ dimensions in each tangent space $T_{\mathrm{P}}(W)$ of the enveloping space W such that $F(\bar{N})=\bar{N}_{\mathrm{P}}$ and \bar{N}_{P} is orthogonal to $T_{\mathrm{P}}^{H}(V)$ at each point P of V, where $\operatorname{dim} W=N, \operatorname{dim} V=n$ and $\operatorname{dim} H_{\mathrm{P}}=r$. Thus we have an f-surface $\{V, N(V), \bar{N}(V)\}$ corresponding uniquely to the given metric f-submanifold V and denote it simply by V.

Remark. We shall give an example of submanifolds of a Hermitian space, which are f-submanifolds in the sense of $\S 3$ and are not metric f-submanifolds in the sense of this section. Let W be the space of all m complex numbers $\left(z^{1}, z^{2}, \cdots, z^{m}\right)$ and put $z^{\alpha}=x^{\alpha}+\sqrt{-1} x^{\alpha+m}(\alpha=1,2, \cdots, m)$, where x^{α} and $x^{\alpha+m}$ are real numbers. Then W is a Hermitian space with the natural metric

$$
d s^{2}=d z^{1} d \bar{z}^{1}+d z^{2} d \bar{z}^{2}+\cdots+d z^{m} d \bar{z}^{m}
$$

We consider in W a ($2 m-2$)-dimensional submanifold \widehat{V} defined by equations

$$
\left(x^{1}\right)^{2}+\cdots+\left(x^{2 m-1}\right)^{2}=1, \quad x^{2 m}=0
$$

If we denote by V the open submanifold $\widehat{V}-\mathrm{P}_{+}-\mathrm{P}_{-}$of $\widehat{V}, \mathrm{P}_{+}$and P_{-}being respectively the points $(0, \cdots, 0,+1,0)$ and $(0, \cdots, 0,-1,0)$ belonging to \widehat{V}, then V is an f-submanifold of W in the sense of $\S 3$. It is easily verified that V is not a metric f-submanifold of W in the sense of this section.

Received July 1, 1966.

