ON AN INVARIANT TENSOR UNDER A CL-TRANSFORMATION

By Satoshi Kotō and Mitsugi Nagao

Tashiro and Tachibana showed some characteristic properties of Fubinian and C-Fubinian manifolds in their paper [6], where the notion of C-loxodromes was introduced in an almost contact manifold with affine connection.

The purpose of the present paper is to obtain an invariant tensor, that is, a tensor which is left invariant under a CL-transformation between two almost contact manifolds with symmetric affine connections. And Takamatsu and Mizusawa have performed the similar consideration about infinitesimal $C L$-transformations. [2].
§ 1. Preliminaries. [4, 5, 7, 8].
Let there be given, in an N-dimensional differentiable manifold M of class C^{∞}, a non-null tensor field f of type $(1,1)$ and of class C^{∞} satisfying $f^{3}+f=0$. When the rank of f is constant everywhere and is equal to r, such a structure is called an f-structure of rank $r . \quad r$ is necessarily even.

Now, let M be a $(2 n+1)$-dimensional differentiable manifold of class C^{∞} for which the second axiom of countability holds true. If there exist a mixed tensor $f_{j}{ }^{2}$, a contravariant vector field f^{i} and a covariant vector field f_{j}, all of which are of class C^{∞}, satisfying the conditions:

$$
f^{i} f_{i}=1, \quad f_{j} f_{k^{\prime}}=-\partial_{k}^{i}+f^{i} f_{k},
$$

then such a manifold M is said to have an almost contact structure ($f_{j}{ }^{i}, f^{i}, f_{j}$) of class C^{∞} and we call the manifold an almost contact manifold of class C^{∞}.

It is well-known that in a manifold with an almost contact structure $\left(f_{j}{ }^{i}, f^{i}, f_{j}\right)$ of class C^{∞}, there exists a positive definite Riemannian metric $g_{j i}$, which is called a Riemannian metric associated with the almost contact structure, such that

$$
f_{i}=g_{i j} f^{j}, \quad g_{j i} f_{h} \jmath f_{k}{ }^{2}=g_{h k}-f_{h} f_{k} .
$$

We call the set ($f_{j}{ }^{2}, f^{i}, f_{j}, g_{j i}$) an almost contact metric structure and a manifold with an almost contact metric structure ($f_{j}{ }^{2}, f^{i}, f_{j}, g_{j i}$) of class C° is called an almost contact metric (or Riemannian) manifold of class C^{∞}.

In a $(2 n+1)$-dimensional differentiable manifold with an almost contact structure ($f_{j}{ }^{2}, f^{i}, f_{j}$), the following properties are satisfied:

$$
\begin{equation*}
f^{i} f_{2}=1, \tag{1.1}
\end{equation*}
$$

Received September 9, 1965.

