ON FIBERINGS OF ALMOST CONTACT MANIFOLDS

By Koichi Ogiue

Introduction.

We study, in this paper, relations between almost contact structures and the induced complex structures. Throughout this paper, we consider the case in which an almost contact manifold \tilde{M} is the bundle space of a principal fibre bundle over an almost complex manifold M.

We induce, in 1, an almost complex structure on M.

We consider, in § 2, two sorts of torsions \tilde{N} and $\tilde{\Phi}$ of an almost contact structure defined by Nijenhuis [4] and Sasaki-Hatakeyama [8] respectively, and investigate relations between the integrability of the induced almost complex structure on M and the vanishing of \tilde{N} or $\tilde{\Phi}$.

In §3 we consider an almost contact metric structure on \tilde{M} and induce an almost Hermitian structure on M and investigate relations between them.

In §4 we study, as special cases, an almost Sasakian structure and a Sasakian structure on \tilde{M} and induce on M an almost Kähler structure and a Kähler structure.

In the last section we study a relation between the Riemannian connection on \tilde{M} and on M and a relation between the curvature of \tilde{M} and the curvature of M.

I wish to express my sincere gratitude to Professors K. Yano and S. Ishihara who encouraged me to study these problems and gave many valuable suggestions.

§1. Regular almost contact structures.

Let \widetilde{M} be a (2n+1)-dimensional differentiable manifold. We denote by $\tilde{\mathfrak{X}}$ the Lie algebra of all vector fields on \widetilde{M} .

An almost contact structure on \tilde{M} is defined by a (1,1)-tensor field ϕ , a vector field ξ and a 1-form η satisfying the following conditions [7]:

(1.1) $\phi(\xi) = 0,$

(1. 2)
$$\eta(\phi(\widetilde{X}))=0$$
 for all $\widetilde{X}\in\tilde{\mathfrak{X}}$,

(1.3)
$$\eta(\xi) = 1$$
,

(1.4)
$$\phi^{2}(\widetilde{X}) = -\widetilde{X} + \eta(\widetilde{X}) \cdot \xi \quad \text{for all} \quad \widetilde{X} \in \widetilde{X}.$$

Received September 19, 1964.