LENGTH OF THE SINGULAR SET OF SCHOTTKY GROUP

By Tohru Akaza

1. Let B_0 be an infinite domain on the *z*-plane, whose boundary consists of $2p \ (p \ge 2)$ mutually disjoint circles $H_i, H_i' \ (i=1, 2, \dots, p)$. These circles are equivalent in pairs $(H_i, H_i') \ (i=1, 2, \dots, p)$; the outside of H_i is mapped onto the inside of H_i' by hyperbolic or loxodromic transformations

$$S_i: \quad z' = rac{lpha_i z + eta_i}{\gamma_i z + \delta_i} \qquad (lpha_i \delta_i - eta_i \gamma_i = 1).$$

The transformations S_i $(i=1, 2, \dots, p)$ generate a Schottky group G with the fundamental domain B_0 .

2. Now let us define the grade of a transformation $S \in G$. Any element *S* of *G* is represented as the product of generators S_i (*i*=1, 2, ..., *p*) in the form

$$S = S_{i_1}^{\lambda_1} S_{i_2}^{\lambda_2} \cdots S_{i_k}^{\lambda_k},$$

where the exponents λ_{j} are integers. We call the sum

$$m = \sum_{j=1}^{k} |\lambda_j|$$

the grade of S and that of the image $S(B_0)$ of B_0 . In particular, the identical transformation and B_0 have the grade 0, and any generator S_i $(i=1, 2, \dots, p)$ together with its inverse S_i^{-1} and the image $S_i(B_0)$ of B_0 have the grade 1.

Consider an infinite set of circles which are obtained from p pairs of circles H_i, H_i' (i=1, 2, ..., p) of B_0 by all the transformations of G. We say that a circle of the set is of grade m, if it is surrounded by m circles of the set. The total number of circles of grade m is obviously equal to $2p(2p-1)^m$. If we perform a transformation of grade m (>0) on B_0 , we obtain a domain of grade m whose outer boundary is a circle of grade m-1 and inner boundaries are 2p-1 circles of grade m.

Denote by D_m a domain bounded by the whole circles of grade m. Then D_m $(m=0, 1, 2, \cdots)$ are a monotone increasing sequence of domains, so that D_{μ} $(\mu < m)$ is contained in D_m as a subdomain. Further, denote by D_m^c the complement of D_m with respect to the extended z-plane. Then D_m^c consists of $2p(2p-1)^m$ closed disks which are mutually disjoint. For $m \rightarrow \infty$ D_m^c converges to a perfect non-dense set E. We call E the singular set of G. G is properly discontinuous in the complement of E.

Received September 7, 1962.