LENGTH OF THE SINGULAR SET OF SCHOTTKY GROUP

By Tohru Akaza

1. Let B_{0} be an infinite domain on the z-plane, whose boundary consists of $2 p(p \geqq 2)$ mutually disjoint circles $H_{\imath}, H_{\imath}{ }^{\prime}(i=1,2, \cdots, p)$. These circles are equivalent in pairs $\left(H_{\imath}, H_{\imath}{ }^{\prime}\right)(i=1,2, \cdots, p)$; the outside of H_{\imath} is mapped onto the inside of $H_{2}{ }^{\prime}$ by hyperbolic or loxodromic transformations

$$
S_{i}: \quad z^{\prime}=\frac{\alpha_{i} z+\beta_{i}}{\gamma_{i} z+\delta_{i}} \quad\left(\alpha_{i} \delta_{i}-\beta_{i} \gamma_{i}=1\right) .
$$

The transformations $S_{i}(i=1,2, \cdots, p)$ generate a Schottky group G with the fundamental domain B_{0}.
2. Now let us define the grade of a transformation $S \in G$. Any element S of G is represented as the product of generators $S_{i}(i=1,2, \cdots, p)$ in the form

$$
S=S_{21}^{\lambda_{1}} S_{22}^{\lambda_{2}} \cdots S_{2 k}^{\lambda_{k}},
$$

where the exponents $\lambda_{\text {, }}$ are integers. We call the sum

$$
m=\sum_{j=1}^{k}\left|\lambda_{j}\right|
$$

the grade of S and that of the image $S\left(B_{0}\right)$ of B_{0}. In particular, the identical transformation and B_{0} have the grade 0 , and any generator $S_{i}(\imath=1,2, \cdots, p)$ together with its inverse S_{i}^{-1} and the image $S_{i}\left(B_{0}\right)$ of B_{0} have the grade 1 .

Consider an infinite set of circles which are obtained from p pairs of circles $H_{\imath}, H_{\imath}{ }^{\prime}(i=1,2, \cdots, p)$ of B_{0} by all the transformations of G. We say that a circle of the set is of grade m, if it is surrounded by m circles of the set. The total number of circles of grade m is obviously equal to $2 p(2 p-1)^{m}$. If we perform a transformation of grade $m(>0)$ on B_{0}, we obtain a domain of grade m whose outer boundary is a circle of grade $m-1$ and inner boundaries are $2 p-1$ circles of grade m.

Denote by D_{m} a domain bounded by the whole circles of grade m. Then $D_{m}(m=0,1,2, \cdots)$ are a monotone increasing sequence of domains, so that $D_{\mu}(\mu<m)$ is contained in D_{m} as a subdomain. Further, denote by D_{m}^{c} the complement of D_{m} with respect to the extended z-plane. Then D_{m}^{c} consists of $2 p(2 p-1)^{m}$ closed disks which are mutually disjoint. For $m \rightarrow \infty D_{m}^{c}$ converges to a perfect non-dense set E. We call E the singular set of $G . \quad G$ is properly discontinuous in the complement of E.

Received September 7, 1962.

