By Imsik HONG

(Comm. by Y. Komatu)

In the present paper we shall give a certain character of a null-set for the solution of the equation $4 u + k^2 u = 0$.

Before we formulate our main proposition we will show the following proposition I which leads us immediately to our main proposition II.

Proposition I. Let w be a set of logarithmic mass zero which is contained in a domain D_o with boundary C_o . If a function U, which is continuously differentiable twice and bounded in $D_o - M_o$, satisfies an equation $\Delta U + C^2 U = o$ in $D_o - M_o$, for being a constant, then U satisfies necessarily the equation also for the points of the set M_o . Therefore, Ubecomes analytic in the whole domain D_o including even the set M_o . 1)

Proof. Our method for the proof of the proposition I follows that of the Lindeberg's theorem², suitably modified. Now, since we may suppose the set \mathcal{M} , laid on the t-Plane, to be bounded, so we can cover it with a finite number of circles, $|t-a_{\nu}| < f_{\nu}$ $y = 1, 2, \cdots, M$, where, for any preassigned positive number ε , the f's satisfy a condition

(1)
$$\sum_{\nu=1}^{n} \frac{1}{|\log f_{\nu}|} < \varepsilon$$

Remove all these circles from the domain $D_{\rm o}$ and denote by $D_{\rm g}$ the domain thus obtained. Let $C+C_{\rm g}$ be the boundary of the domain $D_{\rm g}$.

Now let us consider another function V which satisfies the equation $4V + k_c^2 V^2 = 0$ everywhere in D_o including the set M, and which on C has the same boundary values as those of U. It is sufficient for the proof of our proposition to show that U coincides with V identically in $D_c - M$. Now, let, by assumption, $|U| < k_c$, then the function U - V has the following properties:

$$\Delta(u-v)+\ell^2(u-v)=0 \quad \text{in} \quad D_{g}$$

and

U-V=0 on C, $|U-V| < k_1 + k_1' = k$ on C_{ϵ} ,

since there exists a constant k_1' such that $|V| < k_1'$ on C_{g} .

If we define a function $\mathcal{W}_{\hat{\varepsilon}}$ by an equation

(2)
$$W_{\xi} = K_{y=1}^{N} \frac{Y_{o}(k|t-a_{y}|)}{\frac{1}{2}\log f_{y}}$$

where Y_{\circ} denotes the Neumann's cylindrical function, then it is obvious that $4W_{\tilde{t}} + k^{*}W_{\tilde{v}} \approx o$ in D_{ϵ} . And $W_{\tilde{v}}$ will behave as a majorant of U-V, that is, $W_{\tilde{v}} > U-V$ in D_{ϵ} . In order to show this fact, we first investigate the boundary properties of the function $W_{\tilde{v}}$. Let the distance between any point of C and any point of M be less than the number V_{σ}/k_{c} where V_{σ} denotes the smallest positive zero-point of Y_{σ} and let $f_{V} < 1$, then $W_{\tilde{v}} > 0$ on C, since $Y_{\sigma}(k|t-\alpha_{V}|)$ becomes negative in D_{σ} .

What we can next say about boundary property of $W_{\overline{c}}$ is that on $C_{\underline{t}}$, $W_{\overline{s}}$ >R. In fact, there holds a limit equation

$$\lim_{x \to 0} \frac{Y_0(kx)}{\frac{2}{\pi}\log x} = 1$$

which implies

$$\frac{Y_{o}(kx)}{\frac{1}{2}\log x} > 1$$

for sufficiently small enough $| \boldsymbol{x} |$. Hence we may suppose

$$\frac{Y_{\circ}(k_{f})}{\frac{1}{2}\log f_{v}} > 1$$

for points on the $\dot{\mathcal{Y}}$ -th circle lying on \mathcal{C}_t , and further, remembering that D_o is taken small enough,

$$\frac{\frac{Y_{o}(\frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2})}{\frac{1}{2} \log f_{u}} > 0 \quad (u \neq v)$$

$$t \text{ on the } y \text{-th circle}.$$

Finally let us consider a function $W_{\tilde{E}}$ defined by $W_{\tilde{E}} = W_{\tilde{E}} - (u-v)$. It is readily seen that $\Delta W_{\tilde{E}} + k^2 W_{\tilde{E}} = o$ in $D_{\tilde{E}}$ and $W_{\tilde{E}} > o$ on the boundary of $D_{\tilde{E}}$, that is on $C + C_{\tilde{E}}$. With help of a character of the first eigen-value as a domain function, we can conclude