In the present paper we shall give a certain character of a null-set for the solution of the equation $4 u+k^{2} u$ $=0$.

Before we formulate our main propos sition we will show the following proposition I which leads us immediately to our main proposition II.

Proposition I. Let m be a set of logarithmic mass zero which is contained in a domain D_{0} with boundary C. If a function l, which is con tinuously diffarentiable twice and bounded in D.-W, satisfies an equation $A u+k^{2} u=0$ in $D_{0}-m, k$ being a constant, then U satisfies necessarily the equation also for the points of the set m. Therefore, U becomes analytic in the whole dorasin D_{0} including even the set m. 1)

Proof. Our method for the proof of the proposition I follows that of the Lindeberg's theorem ${ }^{2}$, suitably modified. Now, since we may suppose the set m, laid on the tmplane, to be bounded so we can cover it with a finite number of circles, $\left|t-a_{p}\right|<\rho_{\nu}$ $y=1,2, \cdots, n$, where, for any preas. signed positive number ε, the ρ 's satisfy a condition
(1) $\sum_{\nu=1}^{n} \frac{1}{\left|\log \rho_{\nu}\right|}<\varepsilon$.

Remove all these circles from the domain $D_{\text {o }}$ and denote by D_{ε} the domain thus obtained. Let $c+C_{\varepsilon}$ be the boundary of the domain D_{ε}.

Now let us consider another function V which satisfies the equation $\Delta V+\xi^{2} V$ $=0$ everywhere in D_{0} including the set m, and which on C has the same boundary values as those of U. It is sufficient for the proof of our proposition to show that U coincides with V identically in $D_{0}-M$. Now, let, by assumption, $|u|<k_{\text {e }}$ then the function $u-V$ has the following properties:

$$
\Delta(u-v)+f^{2}(u-v)=0 \text { in } D_{\varepsilon}
$$

and

$$
\begin{gathered}
u-v=0 \quad \text { on } C, \\
|u-v|<k_{1}+k_{1}^{\prime}=E \quad \text { on } C_{\varepsilon} .
\end{gathered}
$$

since there exists a constant k_{1}^{\prime} such that $|V|<f_{z}^{\prime}$ on C_{ε}.

If we define a function W_{ε} by an equation
(2) $w_{\varepsilon}=k \sum_{\nu=1}^{n} \frac{Y_{0}\left(k\left|t-a_{\nu}\right|\right)}{\frac{1}{2} \log f_{\nu}}$, where Yo denotes the Neumann's cylindrical function, then it is obvious that $A w_{\varepsilon}+k^{2} w_{\varepsilon}=0$ in D_{ε}. And W_{ε} will behave as a majorant of $u-v$, that is, $W_{\varepsilon}>U-V$ in D_{ε}. In order to show this fact, we first investio. gate the boundary properties of the function W_{ε}. Let the distance botween any point of C and any point of m be less than the number γ_{0} / k where γ_{0} denotes the smallest positive zero-point of Y_{0} and let $\rho_{V}<1$, then $W_{\varepsilon}>0$ on C, since $Y_{0}\left(k\left|t-a_{\nu}\right|\right)$ becomes negative in D_{0}.

What we can next say about boundary property of W_{ε} is that on $C_{\varepsilon,} W_{i}>R$. In fact, there holds a limit equation

$$
\lim _{x \rightarrow 0} \frac{Y_{0}(\operatorname{le} x)}{\frac{2}{\pi} \log x}=1
$$

which implies

$$
\frac{Y_{0}(k x)}{\frac{1}{2} \log x}>1
$$

for sufficiently small enough $|x|$. Hence we may suppose

$$
\frac{Y_{0}\left(\ell_{\mu}\right)}{\frac{1}{2} \log \rho_{\nu}}>1
$$

for points on the ν-th circle lying on. C_{2}, and further, remembering that D_{0} is taken small enough,

$$
\frac{Y_{0}\left(t \mid t-a_{\mu}\right)}{\frac{1}{2} \log \rho_{\mu}}>0 \quad(\mu \neq \nu) \quad \text { or the } \nu \text {-th cincle. }
$$

Finally let us consider a function W_{ε} defined by $W_{\varepsilon}=W_{\varepsilon}-(u-)_{\}}$It is readily seen that $\Delta W_{\varepsilon}+k^{2} W_{\varepsilon}=0$ in D_{ε} and $W_{\varepsilon}>0$ on the boundary of D_{ε}, that is on $C^{2}+C_{\varepsilon}$. With help of a character of the first eigen-value as a domain function, we can conclude

