ON THE SINGULARITIES OF THE DIFFERENTIAL EQUATION
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§1
1. In this section we shall con~
sider the differential equation
(1) +f(w 2+ gly) = Plx),

where f(y) and g(y) are polynomials
of degree n and m respectively, i.e.,
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and P(x) is a regular and single-
valued function of x in certain
neighborhood D of x* on the x-plane,
If we put dy/dx =z, we have a
simultaneous equation
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Since the right hand side of it is
regular 1n certain domain containing
(x*, y*, 2%) in virtue of the hypo-
theses, there exists the one and only
one regular solution through the point
(x*, y*, z*)., If we continue the so-
lution along a curve C, we may en-
counter a singular point or tend to
the point at infinity. Hence the
analytic continuation carries out a
problem of singularities. In the
sequel we shall exclusively consider
a problem of isolated singularities
which will appear as essential singu-
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larities, poles or branch points.
And we always exclude the cases where
n=0and m=0 or 1.

We suppose that we can continue a
solution y = y(x) of (1) along any
curve C up to a point x,, but not
beyond it. Further we suppose that,
if we approach to x, along C, y._.y(x)
tendsto o0, Then, the point X = Xo
18 an isolated singularity and it may
be a branch point. Then, we e a
change of variable x - xo=1t" if x,
is finite and x= t—X if x5 = c0 ,
where k is a positive integer not
equal to zero and t is a local para-
meter which uniformize the solution in
a neighborhood of x,. Then, it
follows from the equatlon (1) that
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if X = Xo= tk, and
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if x =t7%, According to the hypo-

theses, the solution of (2) is of the

form o

=3 at”
y=~-f J
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A,.+0, rzl.

Substituting (4) into (2), we obtain
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