ON RIEMANN SURFACES, II

By Mitsuru OZAWA

§ 4. Dimensions of ideal boundary (continuation).

If $F \in O_{\Omega}$ and $\Gamma \in (b)$, then the situation is somewhat troublesome to handle. Let \mathcal{S}_{v} be the least harmonic majorant of $v \in \mathcal{O}_{|F-\overline{F}|}$. Then \mathcal{S}_{v} has its sense for any $v \in \mathcal{O}_{|F-\overline{F}|}$. Let S_{v} be a limit harmonic function $\lim_{n \to \infty} v^{n}$ defined as follows: v^{n} is harmonic on $F_{n} - \overline{F}_{v}$ such that $v^{n} = v$ on $\Gamma_{n} + \Gamma_{v}$. Then we have easily that $\mathcal{S}_{v} \equiv S_{v}$. Let \mathcal{T}_{u} be the largest minorant of $u \in |P_{F-\overline{F}|}$ belonging to $\mathcal{P}_{F-\overline{F}|}$. Then \mathcal{T}_{u} is equal to either constant zero or a solution of (A) such that $\mathcal{T}_{u} \neq 0$. If $\mathcal{T}_{u} \neq 0$, then $\mathcal{T}_{u} \in \mathcal{P}_{F-\overline{F}|}$, Let u^{n} be a solution of (A) on $F_{n} - \overline{F}_{v}$ such that $u^{n} = u$ on $\Gamma_{n} + \Gamma_{v}$, then $\mathcal{T}_{u} = \lim_{v \to \infty} u^{n}$ exists and either $\mathcal{T}_{u} \equiv 0$ or $\mathcal{T}_{u} \neq 0$. Moreover \mathcal{T}_{u} coincides with \mathcal{T}_{u} . We have the following facts:

have the following facts: (i) $\Im \otimes = 1$ for any $\Im \oplus \Im_{F-\overline{F}}$, (ii) & operation preserves the linear independency.

Let [U] be a positively linear subspace of $\mathbb{P}_{F-\overline{F}_o}$ spanned by all the minimals $u_i, i=1,\cdots,n$ such that \mathcal{T}_{u_i} $\ddagger 0$, $u_i \in \mathbb{P}_{F-\overline{F}_o}$ and let $\mathcal{T}[U]$ be T image of [U]. Let [V] be a positively linear subspace of $\mathcal{P}_{F-\overline{F}_o}$ for each element of which \mathscr{S} operation has the sense. Evidently $\mathcal{G}_{F-\overline{F}_o} \subseteq [V] \subset \mathcal{Q}_{F-\overline{F}_o} \cdot$ Let $\mathscr{S}[V]$ be \mathscr{S} image of [V]. Next facts are also easy to verify:

$$\mathcal{S}[V] \subset [U]$$
 and $[V] \subset \mathcal{T}[U]$.

Let u be a minimal in $\mathbb{P}_{F^-\overline{F}_0}$ such that $\mathcal{T}_u \not\equiv 0$. Then $\mathcal{J}_u = u$ is valid. This shows that $\mathcal{T}[U] \subset [V]$ and $[U] \subset \mathcal{J}[V]$. Hence we see that $[V] = \mathcal{T}[U]$ and $\mathcal{J}[V] = [U]$. Let u be a minimal belonging to [U], then T_u is also a minimal in Ψ_{F-F_o} . In fact, if we assume that $0 < w \leq T_u$, then \mathcal{S}_w exists and satisfies $0 < \mathcal{S}_w \leq u$, therefore $\mathcal{S}_w = \& u$ holds. This implies the desired fact $w = \& T_u$.

If
$$F \in O_G^{(k)}$$
, then $u = \lim_{n \to \infty} q_{F - F_n}^{(k)}(z, \varsigma_n)$

for a suitable non-compact sequence $\{\zeta_n\}$ for any minimal u in $\|P_{F^-\overline{F_1}}\|$.

If
$$w = \lim_{m \to \infty} G_{F - \overline{F}_o}(z, \zeta_{n_m}) > 0$$
 on $F - \overline{F}_o$

for a suitable subsequence $\{\zeta_{n,m}\}$ of $\{\zeta_n\}$, then $0 \le w \le T_u$ which shows that $w = \# T_u$ and w is also a minimal in $\Phi_{F-\overline{F}_0}$ and T_u belongs to $\mathfrak{Y}_{F-\overline{F}_0}$.

Let $\mathbb{Q}_{F^-\overline{F}_0}$ be a class of positive solutions v of (A) on $F^-\overline{F}_0$ such that $0 < \iint_{F^-\overline{F}_0} v(z) P(z) d^{\sigma} < \infty$ and v = 0 on Γ_0 . We shall next prove that \mathcal{S}_v has the sense for any $v \in \mathbb{Q}_{F^-\overline{F}_0}$. Evidently $v^n \ge v$ on $F_n - \overline{F}_0$ and $v^n > v^m$ if n > m. Therefore $\frac{\partial v^n}{\partial v} \ge 0$ on Γ_0 and $\frac{\partial v^n}{\partial v} \ge \frac{\partial v}{\partial v}$ on Γ_n . On the other hand we see

$$\sum_{n=1}^{\infty} M_{1} > \int_{\Gamma_{n}} \frac{\partial}{\partial \nu} \nabla ds + \iint_{F_{n} - \overline{F_{n}}} \nabla P ds$$
$$= -\int_{\Gamma_{n}} \frac{\partial}{\partial \nu} \nabla ds > -\int_{\Gamma_{n}} \frac{\partial}{\partial \nu} \nabla^{n} ds$$
$$= \int_{\Gamma_{0}} \frac{\partial}{\partial \nu} \nabla^{n} ds ,$$

which leads to a fact that

$$M_1 \geq \int_{\Gamma_0} \frac{\partial}{\partial \nu} S_{\nu} \, ds$$
.

and hence we see that

S_v ≢ ∞