By Takayuki TAMURA and Naoki KIMURA

If there exists a homomorphism of a semigroup S onto a semigroup S* having special type, all elements of S are decomposed into the class sum of mutually disjoint subsets. Then we say that the decomposition of S to S* is obtained. In particular the decomposition to a semilattice is of importance, i.e., $S = \bigcup_{a \in P} S_a$ where $S_a \cap S_{\beta} = \phi(a + \beta)$, every S_a is a restrictive subsemigroup, and for any α , β , there is a unique **r** such that $S_{\alpha} S_{\beta} \subset S_{\delta}$ as well as $S_{\beta} S_{\alpha} \subset S_{\delta}$. In §1 we argue that there is greatest decomposition of a semigroup to a semilattice; particularly in §2 we show a decomposition of a commutative semigroup by method different from Mr. Numakura's, and in §3 our decomposition is proved to be greatest.

31 Greatest decomposition

In this paragraph S is assumed to be a general semigroup. A decomposition of S to an idempotent semigroup gives an equivalence relation; and an equivalence relation \sim in S raises a decomposition of S to an idempotent semigroup if and only if

(1) $a \sim b$, $c \sim d$ imply $ac \sim bd$, (2) if $a \sim b$ then $a \sim ab$.

Lemma 1. (1) and (2) are equivalent to (1') and (2'), (1') a~& implies ac~& c and ca~c& for every c, (2') a~a² for every a.

Proof. $(1') \rightarrow (1)$: For, from $a \sim b$, follows $ac \sim 4c$; and from $c \sim d$, $bc \sim bd$. By transitivity, $ac \sim bd \cdot (1) \rightarrow (1')$: evident. (1')& $(2') \rightarrow (2)$: from $a \sim b$, it follows that $a \sim a^2 \sim ab \cdot (2) \rightarrow (2')$: evident.

We denote by \mathfrak{O} the set of all decompositions φ of S to a semilattice, and by \mathfrak{L} the congruence relation which gives φ . The relation \mathfrak{L} and \mathfrak{L} are equal if they give the same decomposition. Obviously \mathfrak{Q} is not empty, because it includes at least a trivial decomposition, a partition of all elements of S into one class.

Now we introduce the ordering into \mathfrak{O} : i.e. $\mathfrak{P} \geq \psi$ means that $\mathfrak{I} \mathfrak{I} \mathfrak{I}$ if $\mathfrak{I} \mathfrak{I} \mathfrak{I} \mathfrak{I}$. The ordering is clearly a partial ordering. Then we have the below lammas.

Lemma 2. & forms a complete semilattice.

Proof. Since \mathfrak{G} is a partly ordered set, we show that any subset \mathfrak{G}_i of \mathfrak{G} has a least upper bound. We define a relation \mathfrak{G}_i as follows. $x \perp y$ means that $x \prec y$ for every $\mathfrak{g}_{\mathfrak{G}} \mathfrak{G}_i$. It is not hard to verify that \mathfrak{G}_i is an equivalence relation and satisfies the condition (1') and (2') (in Lemma 1). Clearly $\mathfrak{g} \geqq \mathfrak{g}$ for all $\mathfrak{g}_{\mathfrak{G}} \mathfrak{G}_i$. Take up any $\mathfrak{g}_i \geqq \mathfrak{g}$ for all $\mathfrak{g}_{\mathfrak{G}} \mathfrak{G}_i$, then from $\mathfrak{g}_i \nvDash \mathfrak{g}_i$ for all $\mathfrak{g}_{\mathfrak{G}} \mathfrak{G}_i$, then from $\mathfrak{g}_i \nvDash \mathfrak{g}_i$ hence $\mathfrak{g}_i \geqq \mathfrak{g}_i$, and so \mathfrak{g}_i is the least upper bound of \mathfrak{G}_i . Consequently

Theorem 1. There is a greatest element of \mathcal{D} . In other words, there exists the greatest decomposition of a semigroup to a semilattice.

In another article we shall relate what is an equivalence relation giving the greatest decomposition of a general semigroup.

§ 2 A decomposition of a commutative semigroup

Let S be a commutative semigroup. We define an ordering $a \ge 4$ between elements a and b of S to mean that a certain element $x \in S$ and a positive integer m are found such that

 $a^m = bx$