By Mitsuru OZAWA

A definition of harmonic dimension for any extended C-end has been given in our previous paper [1]. A principal aim of the present note is to establish that a class of positive harmonic functions with some restrictions is maximal in certain sense and to give another but equivalent definition of harmonic dimension for any extended C-end which is a natural consequence of the maximality. This new formulation is more convenient to the various purposes and more intrinsic in some senses than the former one.

1. Let Ω be an extended C-end having Γ as its non-compact analytic relative boundary. (Cf. Ozawa [1].) Let $g(z,p_m)$ be the Green function of Ω with pole at p_m . The harmonic dimension dim(Ω) or CH(Ω) of Ω means a maximal cardinal number of linearly independent limit functions lim $g(z,p_m)$ which is non-trivial on

 Ω , where the limiting process $m\to\infty$ is taken along a suitable non-compact sequence $\{p_m\}$. Let $G_{\mathbf{n}}$ be a set of any linear combinations of such limit functions, with positive coefficients, each element of which is positive on Ω .

Let Q_{Ω} be a family of positive harmonic function w on Ω , vanishing identically on Γ , and subjecting to a condition

 $0 < \int_{\Gamma} \frac{\Im}{\Im^{\nu}} W \, ds < \infty.$

Let $\widehat{\Omega}$ — an end in Heins' sense — mean a doubled domain of Ω , symmetric with regard to $\Gamma - \mathbf{T}$, γ being a compact part of Γ . $\widehat{\Box}$ means, in general, the symmetric configuration of a configuration \Box with respect to $\Gamma - \sigma$. Then $\widehat{\Omega} = \Omega + \widehat{\Omega}$ $+ (\Gamma - \tau)$. Let $P_{\widehat{\Omega}}$ be a family of positive harmonic functions on $\widehat{\Omega}$ with vanishing boundary value on $\tau + \widetilde{\tau}$. Let $\{F_n\}_{n=0,1,\cdots}$ be an exhaustion of symmetric surface F into which $\widehat{\Omega}$ is imbedded such that $F_{\bullet} = F - \widehat{\Omega}$ is compact and has $\overline{\tau} + \widetilde{\tau}$ as its compact relative boundary. Here F and F_n are supposed to be symmetric with respect to $\Gamma - \overline{\tau}$. Let C_n ($\neq \overline{\tau} + \widetilde{\tau}$) denote a relative boundary of F_n and let $\overline{\tau}_n = C_n \cap \Omega$, $\widetilde{\tau}_n = C_n \cap (F - \Omega)$ and $\Gamma_n = \Gamma_0 F_n$, $\Omega_n = \Omega_0 F_n$.

2. S and T operations. Methods and results in this section are due to Kuramochi who has solved affirmatively our unsolved problem II in our previous paper [1] and related problems. For completeness we shall explain his procedure with a slight modification.

Let W(z) be any member of Q_{Ω} . Let Wⁿ(z) be a function bounded and harmonic on $F_n - F_o$ satisfying the following conditions: Wⁿ(z) = 0 for $\tau + \tilde{\tau} + \tilde{\tau}_n$ and = W(z) for τ_n . Then evidently Wⁿ(z) \geq W(z) holds on Ω_n , and therefore this leads to a fact that

$$\int \frac{\partial}{\partial v} \left(W^n(z) - W(z) \right) \ge 0$$
 on \mathfrak{T}_n

and

$$\frac{\partial}{\partial \nu} W^n(z) \ge 0 \qquad \text{on} \quad \widetilde{v}_n + \tau + \widetilde{v}.$$

Hence we see that

$$\infty > M = \int_{\Gamma} \frac{\Im}{\Im v} W(z) ds$$

$$\geq \int_{\Gamma_{n}} \frac{\Im}{\Im v} W(z) ds = -\int_{\widetilde{T}_{n}} \frac{\Im}{\Im v} W(z) ds$$

$$\geq -\int_{\widetilde{T}_{n}} \frac{\Im}{\Im v} W^{n}(z) ds = \int_{\widetilde{T} + \widetilde{T} + \widetilde{T}_{n}} \frac{\Im}{\Im v} W^{n}(z) ds$$

$$> \int_{\widetilde{T} + \widetilde{T}} \frac{\Im}{\Im v} W^{n}(z) ds .$$

Moreover we see easily that $W^{n}(z)$. $\geq W^{m}(z)$, for n > m on Ω_{m} . There-