By Insik HONG
（Comm．by Y．Komatu）

In this paper，we shall give a method to solve a boundary value problem in an annulus．Consider an annulus

$$
N: \quad 1<|z|<R
$$

whose boundary consists of two circles

$$
c_{1}: \quad z=e^{i \theta}, \quad c_{2}: z=R e^{i \theta}
$$

Let $E_{1}=\left\{E_{1 n}\right\}$ and $E_{2}=\left\{E_{2 n}\right\}$ be sets of enumerable open circular arcs having no common parts on C_{1} and C_{2} ， respectively，and let their comple－ mentary sets be $\bar{E}_{1}=C_{1}-E_{1}$ and \bar{E}_{2} $=C_{2}-E_{20}$ We assume that \bar{E}_{1} and \bar{E}_{2} are of capacity zero．We divide $\left\{E_{i n}\right\}, j=1,2$ ，into two classes，$\left\{A_{j n}\right\}$ and $\left\{B_{j n}\right\}$ ，in an arbitrary way．

Problem I：To construct a function $f(2)$ which is harmonic in the an－ nulus N ，and satisfies the following boundary conditions：
（1）$\left\{\begin{array}{l}\lim _{r \rightarrow 1} \frac{\partial f\left(r e^{i \theta}\right)}{\partial r}=A_{1}(\theta) \\ \lim _{r \rightarrow R} \frac{\partial f\left(r e^{i \theta}\right)}{\partial r}=\frac{1}{R} A_{2}(\theta) \\ \text { for } R e^{i \theta} \text { on }\left\{A_{1 n}\right\}, \\ \lim _{r \rightarrow 1} \begin{array}{r}f\left(r e^{i \theta}\right\}\end{array}=B_{1}(\theta), \\ \text { for } e^{i \theta} \text { on }\left\{B_{1 n}\right\}, \\ \lim _{r \rightarrow R} \begin{array}{r}f\left(r e^{i \theta}\right) \\ \text { for } R e^{i \theta} \text { on }\left\{B_{2 n}(\theta)\right.\end{array}\end{array}\right.$
where $A_{j}(\theta)$ and $B_{j}(\theta)$ are the given functions bounded and continuous on respective sets．

Now we replace our problem I in an annulus with an equivalent one in a half plane．For that purpose，we cut the annulus along the negative real axis，namely we restrict θ to vary within the interval（ $-\pi, \pi$ ）。 Let this annulus with the cut be \mathbb{N}^{*} 。 By
the conformal mapping
（2）$t=\exp \{i \pi \log z / \log R\}$ ，
the annulus N^{*} is mapped onto the domain

$$
D: \frac{1}{P}<\rho<P, \quad r>0
$$

where $t=\rho \Omega^{i \varphi}=u+i v$ and P $=\exp (\pi / \log R)$ ．This domain D has two kinds of boundaries：
i）Segments of real axis，

$$
\begin{aligned}
& V=0, \quad \frac{1}{P} \leqq u \leqq P \\
& V=0, \quad-P \leqq u \leqq-\frac{1}{P}
\end{aligned}
$$

which correspond to the circular boundaries of N^{*} 。
ii）Two upper semi－circles

$$
\begin{aligned}
& \rho=\frac{1}{P}, \quad V>0 \\
& \rho=P, \quad V>0
\end{aligned}
$$

which correspond to the upper and lower banks of the cut respectively．

By the conformal mapping（2），our problem is transformed into the following one．

Problem II：To find a function $F(t)$ which is harmonic in D and satisfies the following boundary con－ ditions：
1° ．At the boundary points lying on the real axis，the boundary values of the function itself and of its normal derivative are equal to the values corresponding to the original ones，respectively，
$\lim _{\varphi \rightarrow 0} \frac{\partial F\left(\rho e^{i \varphi}\right)}{\partial \rho}=\frac{\pi}{\log R} A_{1}\left(-\frac{1}{\pi} \log R \log \rho\right)$
for $u=\rho$ on $\left\{a_{1 n}\right\}$,

