NOTE ON 3-FACTOR SETS.

By Tadasi NAKAYAMA (Communicated by S.Ikehara)

Recent increasing concern in higher dimensional factor sets, in connection with higher dimensional cohomology theory in rings and groups", encourages the writer to offer here a small result which he obtained in succession to Teichmuller's work², which he, however, did not publish because of its some immatuarity. It is to raise dimensions by 1 in his previous study on relationship between usual 2-factor sets and norm class group³.

Let K be a Galois extension over a field F, and $G = \{1, \lambda, \mu, \nu, \cdots, \pi\}$ be its Galois group. A system $\{a_{\lambda}, \mu, \nu\}$ of $q^2 = (G)^2$ non-zero elements in K is called a 3-factor set, if

(0) $a_{\lambda,\mu,\nu} \cdot a_{\lambda,\mu\nu,\pi} \cdot a_{\mu,\nu,\pi}^{\lambda} = a_{\lambda,\mu,\nu\pi} a_{\lambda\mu,\nu,\pi}$

for every λ, μ, ν, π .

0

We introduce a simplified notation to denote $\Pi_{\lambda \in G} \alpha_{\lambda,\mu,\nu} \nu$, for instance, by α_{G}, μ, ν , and similarly to denote $\Pi_{\lambda \in G} \alpha_{\mu,\nu,\pi}^{\nu} = N_{K/F} (\alpha_{\mu,\nu,\pi})$ by $\alpha_{\mu,\nu,\pi}^{\eta}$ Then we have, from (0),

(1)
$$a_{q,\mu,\nu} a_{q,\mu\nu,\pi} a_{\mu,\nu,\pi}^{\tau} = a_{q,\mu,\nu\pi} a_{q,\nu,\pi}$$

(2) $a_{\lambda \xi, V} a_{\lambda \xi, \eta} a_{\xi, v, \eta}^{\lambda} = a_{\lambda \xi, v \pi} a_{\xi, v \pi}$

(3)
$$a_{\lambda,\mu,G} a_{\lambda,G,\pi} a_{\mu,G,\pi} = a_{\lambda,\mu,G} a_{\lambda,\mu,G,\pi}$$

(4)
$$a_{x,\mu,\nu} a_{\lambda,\mu\nu,\varphi} a_{\mu\nu,\varphi} = a_{\lambda,\mu,\varphi} a_{\lambda\mu,\nu,\varphi}$$

(3) gives

(3)
$$A_{\lambda,G,\pi} \mathfrak{a}_{\mu,G,\pi} = a_{\lambda\mu,G,\pi}$$

There exists therefore, by virtue of the theorem of so-called transformation elements, an element b_{π} ($\neq \sigma$) for each π , such that

(5)
$$a_{\lambda,G,\pi} = b_{\pi}^{1-\lambda}$$

Hence $N_{K/F}(\alpha_{AG,\pi})=1$, which can, of course, be deduced directly from (3') too. Further, (2) may be written as

$$(2') \quad \frac{\alpha_{\lambda, q, \nu} \alpha_{\lambda, q, \pi}}{\alpha_{\lambda, q, \nu \pi}} = a_{q, \nu, \pi}^{t-\lambda}$$

On combining with (5) we have

(6)
$$\left(\frac{b_{\nu} b_{\pi}}{b_{\nu\pi}}\right)^{1-\lambda} = a_{G,\nu,\pi}^{1-\lambda}$$

$$\alpha_{\mu,\nu} = \frac{b_{\mu}b_{\nu}}{b_{\mu\nu}} a_{G_{\mu}\mu,\nu}^{-1}$$

are contained in the ground field F. Moreover, the system $\{\alpha_{\mu,\nu}\}$ forms a (usual 2-) factor set mod. the norm group $N_{\nu/\mu}$; $N_{\nu/\mu}$ consisting of the totality of the norms of non-zero elements of K with respect to F. For, (1) gives

(7)
$$\alpha_{G,\mu,\nu} \alpha_{G,\mu,\pi} = \alpha_{G,\mu,\nu\pi} \alpha_{G,\pi} \mod N_{KF}^*$$

while trivially

$$\left(\frac{b_{\mu}b_{\nu}}{b_{\mu\nu}}\right)\left(\frac{b_{\mu\nu}b_{\pi}}{b_{\mu\nu\pi}}\right) = \left(\frac{b_{\mu}b_{\nu\pi}}{b_{\mu\nu\pi}}\right)\left(\frac{b_{\nu}b_{\pi}}{b_{\nu\pi}}\right),$$

and thus

(8)
$$\alpha_{\mu,\nu} \alpha_{\mu\nu,\pi} \equiv \alpha_{\mu,\nu\pi} \alpha_{\nu,\pi} (= \alpha_{\mu,\nu\pi} \alpha_{\nu,\pi}^{\mu}$$

mod. $N^{*}_{\nu/F}$

The associate class of the system is uniquely determined, up to mode $N^*\kappa/\mu$, by the associate class of $\{ \mathcal{A}, \mu, \nu \}$. To prove this, we have first to show that the class of $\{ \alpha_{\mu,\nu} \mod N^*\kappa/\mu \}$ is independent of the choice of $\{ b_{\mu} \}$. But a different choice may be given by $\{ \beta b_{\mu} \}$ with $\beta (\neq 0) \in H$. Then $\{ \alpha_{\mu,\nu} \}$ is replaced, correspondingly, by $\{ \beta \ll \mu, \nu \}$, which gives certainly a system associate to $\{ \alpha_{\mu,\nu} \}$. Consider further a system $\{ \alpha'_{\lambda,\mu,\nu} \}$ associate to our $\{ \alpha_{\lambda,\mu,\nu} \}$. It is given as

$$a_{\lambda,\mu,\nu} = a_{\lambda,\mu,\nu} \frac{a_{\lambda,\mu} a_{\lambda,\mu,\nu}}{a_{\lambda,\nu}^{\lambda} a_{\lambda,\mu\nu}}$$

Hence

$$a_{\lambda,G,\nu}' = a_{\lambda,G,\nu} \frac{a_{\lambda,G}}{a_{G,\mu}^{\lambda}} \frac{a_{G,\nu}}{a_{\lambda,G}} = a_{\lambda,G,\nu} a_{G,\nu}^{-\lambda}$$

So we may adopt as b'_{ν} , corresponding to our $\{a'\}$, $b'_{\nu} = b_{\nu} a_{g,\nu}$. Then

$$\alpha'_{\mu\nu} = \frac{b'_{\mu}b'_{\nu}}{b_{\mu\nu}} (a'_{q,\mu,\nu})^{-1} = \frac{b_{\mu}b_{\nu}}{b_{\mu\nu}} \frac{a_{q,\mu}a_{q,\nu}}{a_{q,\mu\nu}} a_{q,\mu\nu}^{-1}$$

$$\frac{a_{\mu\nu}}{a_{q,\mu}} \frac{a_{q,\nu}}{a_{q,\nu}} = \frac{b_{\mu}b_{\nu}}{b_{\mu\nu}} a_{q,\mu\nu}^{-1} a_{\mu,\nu}^{q} = \alpha_{\mu,\nu} a_{q,\nu}^{q} = \alpha_{\mu,\nu}$$

$$mod. N *_{k/H}^{*}$$

The uniqueness assertion of the class of $\{ \forall \mu, \nu \} \mod N_{K,\mu}$ is thus proved. It is further readily seen that a product of two (3-) factor sets corresponds to the