(Communicated by S.Ikehara)

Recent increasing concern in higher dimensional factor sets, in connection with higher dimensional cohomology theory in rings and groups ${ }^{1)}$, encourages the writer to offer here a small result which he obtained in succession to Teichmuller s work ${ }^{2}$, which he, however, did not publish because of its some immatuarity. It is to raise dimensions by 1 in his previous study on relationship between usual 2-factor sets and norm class group ${ }^{3}$.

Let K be a Galois extension over a field F, and $G=\{1, \lambda, \mu, \nu, \cdots, \pi\}$ be its Galois group. A system $\left\{a_{\lambda}, \mu, \nu\right\}$ of $g^{3}=(G)^{3}$ non-zero elements in K is called a 3-factor set, if
(0) $a_{\lambda, \mu, \nu} \cdot a_{\lambda, \mu \nu, \pi} \cdot a_{\mu, \nu, \pi}^{\lambda}=a_{\lambda, \mu, v \pi} a_{\lambda \mu, \nu, \pi}$ for every λ, μ, ν, π.

We introduce a simplified notation to denote TreG $a_{\lambda, \mu}$, , for instance, by
 $a_{\mu, v, \pi}^{2}=N_{\text {rf }}(a \mu, v, \pi)$ by $a_{\mu, v, \pi}$
Then we have, from (0),
(1) $a_{G, \mu, v} a_{G, \mu v, \pi} a_{\mu, v, \pi}^{G}=a_{\pi, \mu, v v} a_{G, v, \pi}$
(2) $a_{\lambda, \xi, v} a_{\lambda, \epsilon, \pi} a_{\phi, v, \pi}^{\lambda}=a_{\lambda, \mathcal{L}, v \pi} a_{G, v, \pi}$

$$
\begin{align*}
& a_{\lambda, \mu, G} a_{\lambda, G, \pi} a_{\mu, G, \pi}^{\lambda}=a_{\lambda, \mu, G} a_{\lambda \mu, G, \pi} \tag{3}\\
& a_{\lambda, \mu, \nu} a_{\lambda, \mu \nu, G} a_{\mu, \nu, G}^{\lambda}=a_{\lambda, \mu, G} a_{\lambda \mu, v, G} \tag{4}
\end{align*}
$$

(3) gives

$$
\left(3^{\prime}\right) \quad a_{\lambda, G, \pi} a_{\mu, G, \pi}^{\lambda}=a_{\lambda \mu, G, \pi}
$$

There exists therefore, by virtue of the theorem of so-called transformation elements, an element $b \pi(\neq \sigma)$ for each π. such that

$$
\begin{equation*}
a_{\lambda, G, \pi}=b_{\pi}^{1-\lambda} \tag{5}
\end{equation*}
$$

Hence $N_{K / F}\left(a_{\lambda G, \pi}\right)=1$; which can, of course, be deduced directly from (3^{i}) too. Further, (2) may be written as

$$
\frac{a_{\lambda, G, v} a_{\lambda, G, \pi}}{a_{\lambda, G, v \pi}}=a_{G, v, \pi}^{1-\lambda}
$$

On combining with (5) we have

$$
\text { (6) } \quad\left(\frac{b_{\nu} b_{\pi}}{b_{v \pi}}\right)^{1-\lambda}=a_{G, v, \pi}^{1-\lambda}
$$

and so the elements

$$
\alpha_{\mu, v}=\frac{b_{v} b_{v}}{b_{\mu v}} a_{G, \mu, \nu}^{-1}
$$

are contained in the ground field F. Moreover, the system $\left\{\alpha_{\mu}, \nu\right\}$ forms a (usual 2-) factor set mod. the norm group
$N_{K / F}^{*} ; \quad N_{k / F}^{*}$ consisting of the totality of the norms of non-zero elements of K with respect to F. For, (1) Gives
(7) $a_{G, \mu, \nu} a_{G, \mu \nu, \pi}=a_{G, \mu, \nu \pi} a_{G, v, \pi} \bmod . N_{K K}^{*}$ while trivially

$$
\left(\frac{b_{\mu} b_{v}}{b_{\mu v}}\right)\left(\frac{b_{\mu v} b_{\pi}}{b_{\mu v \pi}}\right)=\left(\frac{b_{\mu} b_{v \pi}}{b_{\mu v \pi}}\right)\left(\frac{b_{v} b_{\pi}}{b_{v \pi}}\right)
$$

and thus
(8) $\quad \alpha_{\mu, \nu} \alpha_{\mu v, \pi} \equiv \alpha_{\mu, v \pi} \alpha_{v, \pi}=\alpha_{\mu, v / \pi} \alpha_{k, \pi}^{\mu}$

$$
\bmod \cdot N_{k / F}^{*}
$$

The associate class of the syster is uniquely determined, up to modo $N^{*} k / F$, by the associate class of $\left\{a_{\lambda, \mu}, v\right\}$. To prove this, we have first to show that the class of $\left\{\alpha_{\mu, \nu}\right.$ mod. $\left.N^{*} K / F\right\}$ is independent of the choice of $\left\{b_{\mu}\right\}$. But a different choice may be given by $\left\{\beta b_{\mu}\right\}$ with $\beta(\neq 0) \in F$. Then $\{\alpha \mu, v\}$ is replaced, correspondingly, by $\left\{\beta \alpha_{\mu, v}\right\}$, which gives certainly a system associate to $\{\alpha \mu, \nu\}$. Consider further a system $\left\{a_{\lambda, \mu, \nu}^{\prime}\right\}$ associate to our $\left\{a_{\lambda, \mu, \nu}\right\}$. I.t is given as

$$
a_{\lambda, \mu, V}^{\prime}=a_{\lambda, \mu, V} \frac{a_{\lambda, \mu} a_{\lambda \mu, V}}{a_{\mu, V} a_{\lambda, \mu v}}
$$

Hence

$$
a_{\lambda, G, V}^{\prime}=a_{\lambda, G, v} \frac{a_{\lambda, G} a_{G, V}}{a_{G, \mu} a_{\lambda, G}}=a_{\lambda, G, V} a_{G, V}^{1-\lambda}
$$

So we may adopt as b_{ν}^{\prime}, correspondiris to our $\left\{a^{\prime}\right\}, b_{v}^{\prime}=b_{v} a_{G, v}$. Then

$$
\alpha_{\mu, V}^{\prime}=\frac{b_{\mu}^{\prime} b_{V}^{\prime}}{b_{\mu \nu}}\left(a_{G, \mu, V}^{\prime}\right)^{-1}=\frac{b_{\mu} b_{V}}{b_{\mu \nu}} \frac{a_{G, \mu} a_{G, V}}{a_{G, \mu \nu}} a_{G, \mu, V}^{-1}
$$

- $\frac{a_{\mu, V}^{G} a_{G_{i}, V}}{a_{G, \nu} a_{G, V}}=\frac{b_{\mu} b_{v}}{b_{\mu \nu V}} a_{G, N, V}^{-1} a_{\mu, V}^{G}=\alpha_{\mu, V} a_{\mu, V}^{G}=\alpha_{\mu, V}$ $\bmod \quad N_{k / F}^{*}$

The uniqueness asseftion of the class of
$\{\alpha \mu, \nu\} \bmod$. $N_{K l F}$ is thus roved. It is further reacily seen that a prociuct of two (3-)factor sets corresponis to the

