By Yukiyosi KAWADA

(Communicated by T.Kawata)

Let the n-dimensional multiple distribution defined by n random variables $x_{,,}$..., x_{n} be the normal distribution with the probability density

(1)
$$f(x_1, \dots, x_n) = (2\pi)^{-\frac{n}{2}} \sigma^{-n}$$

 $\cdot \exp(-\frac{\sigma^2}{2} \sum_{k=1}^{n} (x_k - m_k)^2).$

Then the two random variables y, z defined by the linear forms:

(2)
$$y = \sum_{k=1}^{n} \alpha_k x_k$$
, $Z = \sum_{k=1}^{n} \beta_k x_k$

are independent if and only if

(3)
$$\sum_{K=1}^{n} \alpha_{k} \beta_{K} = 0$$

holds. Now we consider the converse of this property.

Theorem. Let x_1, \ldots, x_n be n random variables. If any two random variables y, z defined as the linear forms of x_1, \ldots, x_n by (2) are independent whenever the relation (3) holds, then the multiple distribution of x_1, \ldots, x_n is the normal distribution with the probability density (1).

Proof. Let $\mathcal{G}_{\kappa}(s) = \mathbb{E}(\exp(is x_{\kappa}))$ ($\kappa = i, \ldots, n$) be the characteristic function of X_{κ} . Since $\mathcal{Y} = X, \cos \theta + X_2$ $\sin \theta$ and $\mathcal{E} = -\chi$, $\sin \theta + \chi_2 \cos \theta$ are independent by our hypothesis, we have

$$(4) \cdot E(\exp(is y + it Z)) = E(\exp(is y)) E(\exp(it Z)).$$

Since x, and x_2 are independent by our hypothesis, we can represent the both side of (4) by q_1 and q_2 :

(5)
$$\varphi_1(s \cos \theta - t \sin \theta) \varphi_2(s \sin \theta + t \cos \theta) = \varphi_1(s \cos \theta) \varphi_1(-t)$$

 $\cdot \sin \theta + \varphi_2(s \sin \theta) \varphi_2(t \cos \theta).$

Putting $\theta = \pi/4$ and $\sqrt{2}$ s, $\sqrt{2}$ t instead of s, t in (5) we have

(6)
$$\varphi_1(s-t) \varphi_2(s+t) =$$

$$\varphi_1(s) \varphi_1(-t) \varphi_2(s) \varphi_2(t).$$

Taking s = t or s = -t in (6), we have especially the relations:

(7)
$$\mathcal{P}_{2}(2s) = |\mathcal{P}_{1}(s)|^{2} \mathcal{P}_{2}(s)^{2},$$

 $\mathcal{P}_{1}(2s) = \mathcal{P}_{1}(s)^{2} \cdot |\mathcal{P}_{2}(s)|^{2}$

Now follows from (7)

(8)
$$|\varphi_1(s)| = |\varphi_2(s)|$$

Hence we have also from (7) $|\mathcal{P}_{\kappa}(2t)| = |\mathcal{P}_{\kappa}(t)|^{4}$ (k=1,2). Now put s=rt (r = 1,2,...) in (6) we have then $|\mathcal{P}_{\kappa}((r-1)t)| \cdot |\mathcal{P}_{\kappa}((r+1)t)| = |\mathcal{P}_{\kappa}(rt)|^{2} \cdot |\mathcal{P}_{\kappa}(t)|^{2}$ Thus we can prove by the mathematical induction the relation $|\mathcal{P}_{\kappa}(rt)| = |\mathcal{P}_{\kappa}(t)|^{2}$ (r = 1,2,...). Take then t = s/p, we have

$$(9) |\varphi(\lambda s)| = |\varphi_{\kappa}(s)|^{\lambda}$$

for λ = r/p. This relation holds also for any positive number λ by the continuity of $\phi_{\rm K}$.

Let us put s=l in (9), we have $|\varphi_{\kappa}(\lambda)| \approx |\varphi_{\kappa}(1)|^{\lambda^{2}} = \exp(\alpha_{\kappa}\lambda^{2}),$ $\alpha_{\kappa} \leq 0.$ By the relation (8) we have $\alpha_{1} = \alpha_{2} = \alpha$. Hence φ_{κ} has the functional form:

$$\varphi_{\kappa}(t) = \exp(\alpha t + 2\pi i \theta_{\kappa}(t)).$$

From $\varphi_{\kappa}(-t) = \overline{\varphi_{\kappa}(t)}$ follows $\theta_{\kappa}(-t)$ $\equiv \theta_{\kappa}(t) \pmod{1}$. Since we have the relation $\varphi_{\kappa}(2t) = \varphi_{\kappa}(t)^{3} \varphi_{\kappa}(-t)$ from (7), (8), $\theta_{\kappa}(t)$ must satisfy $\Theta_{\kappa}(2t) \equiv 2 \theta_{\kappa}(t) \pmod{1}$. From this follows also $\theta_{\kappa}(2^{\kappa}t) \equiv 2^{\kappa}\theta_{\kappa}(t) \pmod{1}$. Now choose an irrational number ω and put $\theta_{\kappa}(\omega)$ $m_{\mu}\omega \pmod{1}$. Then we have

(10) $\theta_{\kappa}(\lambda) \equiv m_{\kappa}\lambda \pmod{1}$

for $\lambda = 2^{\gamma} \omega$. Since $\theta_{\kappa}(t)$ is continuous and the relation (10) holds for a dense subset $\{2^{\gamma}\omega; \gamma = 1, 2, \dots\}$, (10) holds also for every value λ .