Let the n-dimensional multiple distribution defined by n random variables x_{1}, \ldots, x_{n} be the normal aistribution with the probability density

$$
\begin{align*}
f\left(x_{1}, \ldots, x_{n}\right) & =(2 \pi)^{-\frac{n}{2} \sigma^{-n}} \tag{1}\\
\cdot \exp & \left.=-\frac{\sigma^{2}}{2} \sum_{k=1}^{n}\left(x_{k}-m_{k}\right)^{2}\right)
\end{align*}
$$

Then the two random variables y, z defined by the linear forms:

$$
\begin{equation*}
y=\sum_{k=1}^{n} \alpha_{k} x_{k}, \quad z=\sum_{k=1}^{n} \beta_{k} x_{k} \tag{2}
\end{equation*}
$$

are independent if and only if

$$
\begin{equation*}
\sum_{k=1}^{n} \alpha_{k} \beta_{k}=0 \tag{3}
\end{equation*}
$$

holds. Now we consider the converse of this property.

Theorem. Let x_{1}, \ldots, x_{n} be n random variables. If any two random variables $y, 2$ jefined as the linear forms of x_{1}, \ldots, x_{n} by (2) are independent whenever the relstion (3) holus, then the multiple distribution of x_{1}, \ldots, x_{n} is the normal distribution with the probability density (1).

Proof. Let $\varphi_{k}(s)=E\left(\exp \left(\right.\right.$ is $\left.\left.x_{k}\right)\right)$ ($k=i, \ldots, n$) be the characteristic function of x_{k}. Since $y=x_{1} \cos \theta+x_{2}$ $\sin \theta$ and $z=-x_{1} \sin \theta+x_{2} \cos \theta$ are independent by our hypothesis, we have
(4). $E(\exp ($ is $y+1 t z))=$

$$
E(\exp (\text { is } y)) E(\exp (i t z))
$$

Since x_{1} and x_{2} are independent by our hypothesis, we can represent the both side of (4) by φ_{1} and φ_{2} :
(5)

$$
\begin{aligned}
& \varphi_{1}(\operatorname{sos} \theta-t \sin \theta) \varphi_{2}(s \sin \theta+ \\
& t \cos \theta)=\varphi_{1}(s \cos \theta) \varphi_{1}(-t \\
& \cdot \sin \theta) \varphi_{2}(s \sin \theta) \varphi_{2}(t \cos \theta)
\end{aligned}
$$

Putting $\theta=\pi / 4$ and $\sqrt{2} s, \sqrt{2} t$ instead of s, t in (5) we have

$$
\begin{align*}
& \varphi_{1}(s-t) \varphi_{2}(s+t)= \tag{6}\\
& \quad \varphi_{1}(s) \varphi_{1}(-t) \varphi_{2}(s) \varphi_{2}(t)
\end{align*}
$$

Taking $s=t$ or $s=-t$ in (6), we have especially the relations:

$$
\begin{align*}
& \varphi_{2}(2 s)=\left|\varphi_{1}(s)\right|^{2} \cdot \varphi_{2}(s)^{2} \tag{7}\\
& \varphi_{1}(2 s)=\varphi_{1}(s)^{2} \cdot\left|\varphi_{2}(s)\right|^{2} .
\end{align*}
$$

Now follows from (7)

$$
\begin{equation*}
\left|\varphi_{1}(s)\right|=\left|\varphi_{2}(s)\right| \tag{8}
\end{equation*}
$$

Hence we have also from (7) $\left|\varphi_{k}(2 t)\right|=$ $\left|\varphi_{k}(t)\right|^{4}(k=1,2)$. Now put $s=r t(r=$ $1,2, \ldots 0)$ in (6) we have then $\mid \varphi_{*}((\boldsymbol{r}-1) t)$ $\cdot\left|\varphi_{k}((r+1) t)\right|=\left|\varphi_{k}(r t)\right|^{2} \cdot\left|\varphi_{k}(t)\right|^{2}$ Thus we can prove by the mathematical induction the relation $\left|\varphi_{k}(r t)\right|$ $\left|\varphi_{k}(t)\right|^{r^{2}}(r=1,2, \ldots)$. Take then $t=$ s/p, we have

$$
\begin{equation*}
\left|\varphi_{k}(\lambda s)\right|=\left|\varphi_{k}(s)\right|^{\lambda^{2}} \tag{9}
\end{equation*}
$$

for $\lambda=r / p$. This relation holds also for any positive number λ by the continuity of φ_{k}.

Let us put $s=1$ in (9), we have
$\left|\varphi_{k}(\lambda)\right|=\left|\varphi_{k}(1)\right|^{\lambda^{2}}=\exp \left(\alpha_{k} \lambda^{2}\right)$,
$\alpha_{k} \leqq 0$. By the relation (8) we have $\alpha_{1}=\alpha_{2}=\alpha$. Hence Φ_{K} has the func tional form:

$$
\varphi_{k}(t)=\exp \left(\alpha t+2 \pi i \theta_{k}(t)\right)
$$

From $\varphi_{k}(-t)=\overline{\varphi_{k}(t)}$ follows $\theta_{k}(-t)$ $\equiv \theta_{k}(t)(\bmod .1)$ Since we have the relation $\varphi_{k}(2 t)=\varphi_{k}(t)^{3} \varphi_{k}(-t)$ from (7), (8), $\theta_{k}(t)$ must satisfy $\theta_{A}(2 t) \equiv$ $2 \theta_{k}(t)(\bmod .1)$. From this follows also $\theta_{k}\left(2^{r} t\right) \equiv 2^{r} \theta_{k}(t)(\bmod .1)$. Now choose an irrational number ω and put $\theta_{k}(\omega)$ $m_{k} \omega$ (mod.l). 'then we have

$$
\begin{equation*}
\theta_{k}(\lambda) \equiv m_{k} \lambda \quad(\bmod .1) \tag{10}
\end{equation*}
$$

for $\lambda=2^{r} \omega$. Since $\theta_{k}(t)$ is continuous and the relation (10) holds tor a dense subset $\left\{2^{r} \omega ; r=1,2, \ldots \%\right.$, (10) holds also for every valie λ.

