LOG BETTI COHOMOLOGY, LOG ÉTALE COHOMOLOGY, AND LOG DE RHAM COHOMOLOGY OF LOG SCHEMES OVER C

KAZUYA KATO AND CHIKARA NAKAYAMA

§0. Introduction

The purpose of this paper is to extend the classical relationship between Betti cohomology, étale cohomology and de Rham cohomology for varieties over the complex number field C to the logarithmic geometry over C in the sense of Fontaine-Illusie.

We state the main results Theorem (0.2) and Theorem (0.5) of this paper.

(0.1). For varieties over C, the above three cohomology theories are closely related. We have:

(1) (étale vs. Betti) Let X be a scheme locally of finite type over C, and let F be a constructible sheaf of (torsion) abelian groups on the étale site $X_{\text{ét}}$. Then, we have

$$H^q(X_{\text{\'et}}, F) \cong H^q(X_{\text{an}}, F_{\text{an}})$$
 for any $q \in \mathbb{Z}$,

where X_{an} is the analytic space associated to X and F_{an} is the inverse image of F on X_{an} . (Cf. [AGrV] XVI 4.1. See also the proof of Theorem (2.6).)

(2) (de Rham vs. Betti) Let X be a smooth scheme over C. Then, we have

$$H^q(X, \Omega^{\boldsymbol{\cdot}}_{X/C}) \cong H^q(X_{\mathrm{an}}, C) \quad \text{for any } q \in \mathbb{Z},$$

where $\Omega^{\bullet}_{X/C}$ is the de Rham complex of X ([Gr2]).

In this paper, we prove generalizations of these results to schemes over C endowed with logarithmic structures in the sense of Fontaine-Illusie.

Let X be an fs log scheme ([N1] (1.7)) over C whose underlying scheme \ddot{X} is locally of finite type over C. Then the analytic space X_{an} associated to \ddot{X} is endowed with the inverse image of the log structure of X. For an analytic space Y over C endowed with an fs log structure (like X_{an}), we will define a topological space Y^{\log} which is endowed with a continuous surjective map $\tau: Y^{\log} \to Y$ ((1.2)). We denote $(X_{an})^{\log}$ by X_{an}^{\log} . We prove:

Received March 19, 1997; revised December 14, 1998.