BRAID MONODROMY OF COMPLEX LINE ARRANGEMENTS

Dedicated to the memory of Professor N. Sasakura

NGUYEN VIET DUNG[†]

Abstract

Let V be the complex vector space \mathbb{C}^l , \mathscr{A} an arrangement in V, i.e. a finite family of hyperplanes in V In [11], Moishezon associated to any algebraic plane curve \mathscr{C} of degree n a braid monodromy homomorphism θ $F_s \to B(n)$, where F_s is a free group, B(n) is the Artin braid group. In this paper, we will determine the braid monodromy for the case when \mathscr{C} is an arrangement \mathscr{A} of complex lines in \mathbb{C}^2 , using the notion of labyrinth of an arrangement. As a corollary we get the braid monodromy presentation for the fundamental group of the complement to the arrangement.

1. Introduction

Let $\mathscr{C} = \{f(x, y) = 0\} \in \mathbb{C}^2$ be a plane algebraic curve. From the 1930's, it is well known (see [9], [17]) that the fundamental group of the complement to \mathscr{C} , $\pi_1(\mathbb{C}^2 \setminus \mathscr{C})$, can be computed using the van Kampen's method. In [11], Moishezon introduced the notion of braid monodromy of \mathscr{C} . Suppose that the projection on the x-axis, $pr_1 : \mathbb{C}^2 \to \mathbb{C}^1$, is generic with respect to the curve \mathscr{C} . Let $S(\mathscr{C}) = \{\alpha \in \mathscr{C}; \partial f(\alpha) / \partial y = 0\}$ and $D(\mathscr{C})$ its image under pr_1 . Then the braid monodromy of \mathscr{C} is a homeomorphism $\theta : \pi_1(\mathbb{C}^1 \setminus D(\mathscr{C})) \to B[pr_1^{-1}(x_0), pr_1^{-1}(x_0) \cap \mathscr{C}]$, where $x_0 \in \mathbb{C}^1 \setminus D(\mathscr{C})$ is a base point.

An arrangement \mathscr{A} is a finite family of hyperplanes in \mathbb{C}^{l} . Given an arrangement \mathscr{A} , an algorithm to compute the fundamental group of the complement, $\pi_1(\mathbb{C}^{l} \setminus \bigcup_{H \in \mathscr{A}} H)$, was proved in [14] when \mathscr{A} is the complexification of a real arrangement. Similar results were obtained in [5] and [16] by different methods. For an arbitrary complex arrangement a standard argument using the Zariski hyperplane section theorem (see e.g. [7]) reduces the problem to the case when \mathscr{A} is an arrangement of complex lines in \mathbb{C}^2 . Arvola [1] found an

¹⁹⁹¹ Mathematics Subject Classification: 14H30, 32S50.

Keywords: hyperplane arrangement, labyrinth, braid monodromy, fundamental group.

 $^{^\}dagger$ The author was supported partially by a TMU research grant and by the National Basic Research Program in Natural Sciences of Vietnam

Received March 30, 1998.