J. WANG, F. MENG AND J. LI KODAI MATH J. 19 (1996), 200-206

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF SECOND ORDER NONLINEAR DIFFERENCE EQUATIONS*

JIZHONG WANG, FANWEI MENG AND JIBAO LI

Abstract

In this paper, we study the asymptotic behavior of the second order difference equation

(*) $\Delta(r(n)\Delta x(n)) + f(n, x(n)) = 0.$

we obtain some sufficient conditions which ensure that all the solutions of (*) are bounded, and also obtain some conditions which guarantee that for every solution x(n) of (*) satisfies $|x(n)| = O(R(n, n_0))$ as $n \to \infty$, where $R(n, s) = \sum_{k=0}^{n-1} \frac{1}{r(k)}$.

1. A discrete inequality

In the sequel we will require the following discrete inequality which extends the known discrete inequality obtained by Meng [5].

DEFINITION. A function g(u) is said to belong to \mathcal{F} if g(u) is nondecreasing and continuous on $(0, \infty)$ and

 $g(u)/v \leq g(u/v), \quad u \geq 0, v \geq 1.$

Every where we mean that $\sum_{k=s}^{n} \alpha(k) = 0$ if n < s.

LEMMA. Let x(n), $h_i(n)$, $i=1, 2, \dots, m$ be real valued nonnegative functions defined on $N(n_0) = \{n_0, n_0+1, \dots\}, n_0 \in \{1, 2, \dots\}, f(n) \ge 1$ be nondecreasing on $N(n_0)$, $g_i(u) \in \mathcal{F}$, $i=1, 2, \dots, m$. Suppose that the discrete inequality

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary: 39A10.

Key words and phrases. discrete inequality, difference equation, asymptotic behavior of solutions.

 $[\]ast$ The Subject is Supported by the Natural Science Foundation of Shandong Province P.R. China.

Received March 2, 1995.