Z.-H. TU KODAI MATH. J. 19 (1996), 1-6

ON THE JULIA DIRECTIONS OF THE VALUE DISTRIBUTION OF HOLOMORPHIC CURVES IN $P^{n}(C)$

ZHEN-HAN TU

Abstract

The generalized Picard theorem [4] asserts that any non-constant holomorphic map f of C into $P^n(C)$ misses at most 2n hyperplanes in $P^n(C)$ in general position. In this paper we shall prove that for a transcendental holomorphic map f of C into $P^n(C)$ with an asymptotic value in $P^n(C)$, there exists a ray $J(\theta) = \{z = re^{\sqrt{-1}\theta} : 0 < r < +\infty\}$ such that f, in any open sector with vertex z=0 containing the ray $J(\theta)$, misses at most 2n hyperplanes in $P^n(C)$ in general position.

1. Introduction

Let f(z) be a non-constant meromorphic function on C. We regard f as a holomorphic curve in the Riemann sphere P(C) by identifying P(C) with $CU\{\infty\}$. Picard proved that f misses at most two values in P(C). Using the theory of the normal family, G. Julia [5] proved the following result.

THEOREM A. Let f(z) be a transcendental entire function on C. Then there exists a ray $J(\theta) = \{z = re^{\sqrt{-1}\theta} : 0 < r < +\infty\}$ such that f, in any open sector with vertex z=0 containing the ray $J(\theta)$, misses at most one value in C.

H. Milloux [6] generalized Theorem A to meromorphic functions on C and proved the following result.

THEOREM B. Let f(z) be a transcendental meromorphic function on C with an asymptotic value in P(C). Then there exists a ray $J(\theta) = \{z = re^{\sqrt{-1}\theta} : 0 < r < +\infty\}$ such that f, in any open sector with vertex z=0 containing the ray $J(\theta)$, misses at most two values in P(C).

The ray $J(\theta)$ in Theorem A or Theorem B is called a Julia direction of f. Since a transcendental entire function always has an asymptotic value ∞ in P(C), Theorem B is a generalization of Theorem A. We must note that not every transcendental meromorphic function has a Julia direction. In fact,

Received March 28, 1994; revised June 19, 1995.