S. KATO KODAI MATH. J. 18 (1995), 86-98

CONSTRUCTION OF *n*-END CATENOIDS WITH PRESCRIBED FLUX

SHIN KATO

1. Introduction

Let $X: \widehat{C} - \{q_1, \dots, q_n\} \to \mathbb{R}^3$ be an *n*-end catenoid, that is, a complete minimal surface of genus 0 having *n* catenoid ends at q_i 's, where $\widehat{C} := C \cup \{\infty\}$. Let $G: \widehat{C} - \{q_1, \dots, q_n\} \to \mathbb{S}^2$ be its Gauss map which can be extended naturally on \widehat{C} , and let $w(q_i)$ denote the weight of the end q_i , that is, the similitude ratio of the asymptotic catenoid of the end q_i to the standard catenoid $(g=-z, \eta=-z^{-2}dz)$. Remark that $w(q_i)$ takes negative value if the orientation of the end q_i is a flat end or is removed. The vector $w(q_i)G(q_i)$ is called the flux vector of the end q_i and, it follows from the flux formula (cf. e. g. [2]) that $\sum_{i=1}^n w(q_i)G(q_i) = 0$. Now, conversely, we consider the following

PROBLEM. Given n unit vectors v_1, \dots, v_n in \mathbb{R}^3 and n non-zero real numbers a_1, \dots, a_n satisfying $\sum_{i=1}^n a_i v_i = 0$, is there an n-end catenoid $X: \widehat{C} - \{q_1, \dots, q_n\} \rightarrow \mathbb{R}^3$ such that $G(q_i) = v_i$ and $w(q_i) = a_i^{2}$

In this paper, we study the problem in the case when q_i coincides with $\sigma(v_i)$ for each *i*, where $\sigma: S^2 \rightarrow \hat{C}$ is the stereographic projection from the north pole. Our main result is stated as follows.

THEOREM. Let v_1, \dots, v_n be unit vectors in \mathbb{R}^3 , and a_1, \dots, a_n non-zero real numbers satisfying $\sum_{i=1}^n a_i v_i = 0$. Set $p_i := \sigma(v_i)$ and

$$F_i(z) := \frac{\bar{p}_i z + 1}{z - p_i}.$$

Suppose there are complex numbers b_1, \dots, b_n satisfying

(1.1) $b_i \sum_{j \in N_i} b_j = a_i \quad i = 1, \dots, n,$

(1.2) $\sum_{j \in N_i} b_j F_i(p_j) = 0 \qquad i = 1, \dots, n$

and $\sum_{i=1}^{n} b_i \neq 0$, where $N_i := \{j \in \mathbb{N} | 1 \leq j \leq n, j \neq i\}$. Then there exists an n-end

Received September 27, 1993; revised April 1, 1994.