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1. Introduction

The purpose of this paper is to show that the Riemann hypothesis is equivalent to a
problem of the rate of convergence of certain discrete measures defined on the positive
real numbers to the measure ^udu, where du is Lebesgue measure.

As a motivation consider the following: For each positive real number t/, let μy be
the infinite measure on the real line defined by

where Z denotes the integers and δx denotes the Dirac mass at the point x £ M. It follows
by the Poisson summation formula that if / G C~(K) (C™(Si) = functions / : R -> R,
of class C°° and with compact support), then for every β > 0:

* + *( A ^ y->0.

This is so because by the Poisson summation formula [B],

where / is the Fourier transform of / and, since / is smooth with compact support we
have that / is of rapid decay at infinity. Hence

y Σ f(ny) = /(O) + o(y") as y -> 0 for all /? > 0.
n€S

So, as y — » 0, the atoms of μy cluster uniformly and μy(f) gives a very good approx-
imation of integrals of smooth functions with compact support.

Now let R* denote the multiplicative group of positive real numbers. For each y G M*,
let us consider the infinite measure, ray, defined on smooth functions with compact
support in R* , by the formula:

n€N

where N = {1,2,...} is the set of natural numbers and φ(n) — n Π«|n(l ~ ~) is Euler's
totient function, which counts the number of integers which are relatively prime to a
given integer, and are lesser or equal to that integer. In fact, for every r ^ 0, r an
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