S. ROPPONGI KODAI MATH. J. 17 (1994), 214-227

THE HADAMARD VARIATION OF THE GROUND STATE VALUE OF SOME QUASI-LINEAR ELLIPTIC EQUATIONS

BY SUSUMU ROPPONGI

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^N $(N \ge 2)$ with smooth boundary $\partial \Omega$. Let $\rho(x)$ be a real smooth function on $\partial \Omega$ and ν_x be the exterior unit normal vector at $x \in \partial \Omega$. For any sufficiently small $\varepsilon \ge 0$, let Ω_{ε} be the domain bounded by

$$\partial \Omega_{\varepsilon} = \{x + \varepsilon \rho(x) \nu_x; x \in \partial \Omega\}.$$

Fix $p \in (1, \infty)$ and let q be a fixed number satisfying $0 < q < p^*-1$, where $p^* = \infty$ if $p \ge N$ and $p^* = Np/(N-p)$ if p < N. Then we consider the following problem.

$$(1.1)_{\varepsilon} \qquad \qquad \lambda(\varepsilon) = \inf_{X_{\varepsilon}} \int_{\Omega_{\varepsilon}} |\nabla u|^{p} dx ,$$

where

$$X_{\varepsilon} = \{ u \in W_0^{1, p}(\Omega_{\varepsilon}) ; \|u\|_{L^{q+1}(\Omega_{\varepsilon})} = 1, \ u \ge 0 \ \text{a. e.} \}.$$

It is easy to see that there exists at least one non-negative solution u_{ε} which attains $(1.1)_{\varepsilon}$ and which satisfies

(1.2)
$$-\operatorname{div}\left(|\nabla u_{\varepsilon}|^{p-2}\nabla u_{\varepsilon}(x)\right) = \lambda(\varepsilon)u_{\varepsilon}^{e}(x) \qquad x \in \mathcal{Q}_{\varepsilon}$$
$$u_{\varepsilon}(x) = 0 \qquad x \in \partial \mathcal{Q}_{\varepsilon}$$
$$u_{\varepsilon}(x) \ge 0 \qquad \text{a.e.} \quad x \in \mathcal{Q}_{\varepsilon}.$$

Furthermore $u_{\varepsilon} \in C^{1+\alpha}(\bar{Q}_{\varepsilon})$ for some $\alpha \in (0, 1)$.

In this note we want to show the following.

THEOREM 1. Assume that $p \ge 2$ and $q \ge p-1$. Assume that the minimizer u_0 of $(1.1)_0$ is unique. Then, the following asymptotic behaviour of $\lambda(\varepsilon)$ holds.

(1.3)
$$\lambda(\varepsilon) - \lambda(0) = -\varepsilon(p-1) \int_{\partial \mathcal{Q}} \left| \frac{\partial u_0}{\partial \nu_x}(x) \right|^p \rho(x) d\sigma_x + o(\varepsilon).$$

Here $\partial/\partial v_x$ denotes the derivative along the exterior normal direction.

Received February 9, 1993; revised September 20, 1993.