THE HADAMARD VARIATION OF THE GROUND STATE VALUE OF SOME QUASI-LINEAR ELLIPTIC EQUATIONS

By Susumu Roppongi

1. Introduction

Let Ω be a bounded domain in $\boldsymbol{R}^{N}(N \geqq 2)$ with smooth boundary $\partial \Omega$. Let $\rho(x)$ be a real smooth function on $\partial \Omega$ and ν_{x} be the exterior unit normal vector at $x \in \partial \Omega$. For any sufficiently small $\varepsilon \geqq 0$, let Ω_{ε} be the domain bounded by

$$
\partial \Omega_{\varepsilon}=\left\{x+\varepsilon \rho(x) \nu_{x} ; x \in \partial \Omega\right\}
$$

Fix $p \in(1, \infty)$ and let q be a fixed number satisfying $0<q<p^{*}-1$, where $p^{*}=\infty$ if $p \geqq N$ and $p^{*}=N p /(N-p)$ if $p<N$. Then we consider the following problem.

$$
\begin{equation*}
\lambda(\varepsilon)=\inf _{X_{\varepsilon}} \int_{\Omega_{\varepsilon}}|\nabla u|^{p} d x \tag{1.1}
\end{equation*}
$$

where

$$
X_{\varepsilon}=\left\{u \in W_{0}^{1, p}\left(\Omega_{\varepsilon}\right) ;\|u\|_{L^{q+1}\left(\Omega_{\varepsilon}\right)}=1, u \geqq 0 \text { a. e. }\right\} .
$$

It is easy to see that there exists at least one non-negative solution u_{ε} which attains (1.1) $)_{\varepsilon}$ and which satisfies

$$
\begin{gather*}
-\operatorname{div}\left(\left|\nabla u_{\varepsilon}\right|^{p-2} \nabla u_{\varepsilon}(x)\right)=\lambda(\varepsilon) u_{\varepsilon}^{q}(x) \quad x \in \Omega_{\varepsilon} \tag{1.2}\\
u_{\varepsilon}(x)=0 \quad x \in \partial \Omega_{\varepsilon} \\
u_{\varepsilon}(x) \geqq 0 \quad \text { a. e. } x \in \Omega_{\varepsilon}
\end{gather*}
$$

Furthermore $u_{\varepsilon} \in C^{1+\alpha}\left(\bar{\Omega}_{\varepsilon}\right)$ for some $\alpha \in(0,1)$.
In this note we want to show the following.
THEOREM 1. Assume that $p \geqq 2$ and $q \geqq p-1$. Assume that the minimizer u_{0} of $(1.1)_{0}$ is unique. Then, the following asymptotic behaviour of $\lambda(\varepsilon)$ holds.

$$
\begin{equation*}
\lambda(\varepsilon)-\lambda(0)=-\varepsilon(p-1) \int_{\partial \Omega}\left|\frac{\partial u_{0}}{\partial \nu_{x}}(x)\right|^{p} \rho(x) d \sigma_{x}+o(\varepsilon) \tag{1.3}
\end{equation*}
$$

Here $\partial / \partial \nu_{x}$ denotes the derivative along the exterior normal direction.
Received February 9, 1993 ; revised September 20, 1993.

