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1. Introduction

The concept of Riemannian submersion was introduced by O'Neil [10] and
is discussed by him and others ([4], [8], etc). A Riemannian submersion with
totally geodesic fibers often appears in the differential geometry.

On the other hand, in [3] Chen and Vanhecke introduced the notion of the
reflections with respect to submanifolds. And there are some studies of reflec-
tions with respect to the fibers in a Riemannian submersion or local fibering
of a Sasakian manifold (e.g. [2], [9], [11]).

In this paper, we shall consider a Riemannian submersion π: M->N with
fibers of dimension one. In Section 2, we give some properties of the integra-
bility tensor A with respect to π. In Section 3, we shall consider the isometric
reflections with respect to the fibers in Riemannian submersion which satisfies
certain conditions. Our result is a generalization of the result of Kato and
Motomiya [6], [11]. And particularly, in the case of 3-dimension, we get the
following result: the reflections with respect to the fibers are isometries if and
only if M admits a Sasakian locally ^-symmetric structure. Finally, we give
a complete classification of 3-dimensional Riemannian manifolds with isometric
reflections with respect to the fibers.

2. Riemannian submersion

In this section we collect some results on Riemannian submersions. Let
π: M->N be a Riemannian submersion. Let X denote a tangent vector at
X G M . Then X decomposes as <VX+<MX, where CVX is tangent to the fiber
through x and MX is perpendicular to it. If X=cyχf X is called a vertical
vector. If X—MX, it is called horizontal. Let 7 and 7 denote the Riemannian
connections of M and N respectively.

We define tensors T and A associated with the submersion by
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