F. NARITA KODAI MATH. J. 16 (1993), 416-427

RIEMANNIAN SUBMERSION WITH ISOMETRIC REFLECTIONS WITH RESPECT TO THE FIBERS

Dedicated to Professor Yoji Hatakeyama on his sixtieth birthday

By Fumio Narita

1. Introduction

The concept of Riemannian submersion was introduced by O'Neil [10] and is discussed by him and others ([4], [8], etc). A Riemannian submersion with totally geodesic fibers often appears in the differential geometry.

On the other hand, in [3] Chen and Vanhecke introduced the notion of the reflections with respect to submanifolds. And there are some studies of reflections with respect to the fibers in a Riemannian submersion or local fibering of a Sasakian manifold (e.g. [2], [9], [11]).

In this paper, we shall consider a Riemannian submersion $\pi: M \rightarrow N$ with fibers of dimension one. In Section 2, we give some properties of the integrability tensor A with respect to π . In Section 3, we shall consider the isometric reflections with respect to the fibers in Riemannian submersion which satisfies certain conditions. Our result is a generalization of the result of Kato and Motomiya [6], [11]. And particularly, in the case of 3-dimension, we get the following result: the reflections with respect to the fibers are isometries if and only if M admits a Sasakian locally ϕ -symmetric structure. Finally, we give a complete classification of 3-dimensional Riemannian manifolds with isometric reflections with respect to the fibers.

2. Riemannian submersion

In this section we collect some results on Riemannian submersions. Let $\pi: M \to N$ be a Riemannian submersion. Let X denote a tangent vector at $x \in M$. Then X decomposes as $\mathbb{C}X + \mathcal{H}X$, where $\mathbb{C}VX$ is tangent to the fiber through x and $\mathcal{H}X$ is perpendicular to it. If $X = \mathbb{C}VX$, X is called a vertical vector. If $X = \mathcal{H}X$, it is called horizontal. Let ∇ and $\tilde{\nabla}$ denote the Riemannian connections of M and N respectively.

We define tensors T and A associated with the submersion by

(1)
$$T_{E}F = \mathcal{O}\nabla_{\nu E}\mathcal{H}F + \mathcal{H}\nabla_{\nu E}\mathcal{O}F,$$

Received February 26, 1993; revised March 30, 1993,